
Securing Operating 
Systems Against 
Advanced Malware  

Ashvin Goel
University of Toronto

Advanced Host Level Surveillance (AHLS)
DRDC AHLS Workshop

Feb 06, 2013



Protecting Operating Systems

 Operating system kernel is fully privileged

 Kernel compromises are devastating
 Remote attacker takes control of (i.e., owns) 

machine

 Local user gets root privilege
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Attacking the Kernel
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 Gain limited access to the system
 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access
 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program
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 Gain limited access to the system
 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords
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 E.g., get root shell by targeting vulnerable setuid program
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Linux Kernel Vulnerabilities
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 Vulnerabilities are routinely discovered in 
Linux

 CVE security vulnerability database for last 3 
years

 Why are vulnerabilities increasing?
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2013 190 101 6 41 13 11 58 26



Linux Kernel Complexity
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 Growth in code size
 Palix, ASPLOS 2011

 Many new drivers!

 More swearing
 Vidar Holen, 2012

 Bugs and 
vulnerabilities are 
inevitable
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Kernel Threat Landscape
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 Fastest rising threat in last 2 years is mobile malware
 Typical mobile malware uses fake programs, adware

 Most common platform is Android (runs Linux variant)

 Mcafee: 35000 collected in 2013, expected to double in 2013

 Users deceived into installing these programs from third-party sites

 Social engineering + kernel vulnerability: deadly
 Initially, programs would send premium SMS messages

 Andr/KongFu-L is a fake Angry Birds program

 Exploits kernel vulnerability in Gingerbread to gain root access, 
communicate with remote sites, install additional malware

 Backdoor.AndroidOS.Obad is very sophisticated

 Uses encryption, obfuscation, exploits multiple kernel vulnerabilities to 
obtain device administrator privileges, impossible to remove



Residing in the Kernel
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 Gain limited access to the system

 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access

 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program

 Exploit kernel vulnerability

 Take steps to continue accessing the system
 Install kernel rootkit



Kernel Rootkits
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 A kernel exploit that is designed to hide its presence
 May open backdoors, steal information or actively disable 

kernel-based defenses

 Often installed using social engineering
 Example: Sony rootkit

 In 2005, Sony provided a music player on Windows

 Player installed a kernel rootkit that limited the user’s ability to access a 
CD

 Unfortunately, other kernel malware then took advantage of a 
vulnerability in this rootkit

 When Sony attempted to uninstall its rootkit, it exposed users to an even 
more serious vulnerability



How do Kernel Rootkits Work?
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 Modern kernels allow installing third-party, untrusted 
modules to extend kernel functionality
 Loaded on demand, e.g., when USB camera is plugged in

 Executed with the same privileges as the core kernel

 A kernel rootkit can either be
 A malicious module, or

 A benign, vulnerable module that has been subverted

 After rootkit is installed, it can fully control the machine, 
because it runs with the highest privileges



Understanding Rootkits
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 A “perfect rootkit” is similar to a “perfect crime”: one 
that nobody realizes has taken place

 Rootkits have complete access to kernel code & data
 Install or modify other module or core kernel code

 Replace system calls, disable page protection

 Load code into user processes

 Conceal running processes, installed modules, files

 Tamper with event logging facility

 Bypass tools that monitor system calls or file modifications 
because they can execute entirely in kernel context



Access to Code and Data

 Kernel modules call core kernel functions, 
core kernel calls module functions

 Kernel modules share data with kernel, 
e.g., stack
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// Kernel code

void spin_lock_init(spinlock_t 
*lock)
{
  lock->v = 0;
}

// Correct module code

spinlock_t mylock;
spin_lock_init(&mylock)
;

Module 
code

Kernel memory
Module 
memory

Core kernel
code



Attack

 Attacker tricks kernel to overwrite UID to 
root

 Similarly, attacker can trick kernel to call 
kernel functions of their choosing

13

// Kernel code

void spin_lock_init(spinlock_t 
*lock)
{
  lock->v = 0;
}

Module 
code

Kernel memory
Module 
memory

Core kernel
code

// Malicious module 
code

spin_lock_init(&thread-
>uid);

Thread 
UID

Privilege 
escalation!



Goals of Project
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 Goal is to protect operating system kernels
 Analyze and detect kernel bugs and vulnerabilities

 Protect kernel against module code

 Vulnerable modules

 E.g., module calls unexported function, overwrites kernel stack

 Need to detect disallowed behavior

 Malicious modules (rootkits)

 E.g., CD module calls exported network send function

 Need to detect anomalous behavior

 Requires understanding module behavior

 What modules do, what they should be allowed to do



Challenges

 Kernel APIs are not written defensively
 Assume modules obey implicit rules

 Do not check arguments, permissions, etc.

 Modules cannot be trusted to follow rules
 Module can trick kernel into performing unexpected actions

 Existing solutions
 Anti-virus software protects against user-level malware

 Can be disabled by kernel malware
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Approach

 Instrument all module related code at runtime using 
dynamic binary translation (DBT)
 Rewrite binary module code on-the-fly during execution

 Operates at instruction granularity

 Provides complete control over program execution

 Requires no module sources to be available

 Building a system called Granary

 Two key ideas
 Add module and kernel interface wrappers

 Allows mediating all control transfers between kernel and modules

 Verify memory accesses by modules using watchpoints

 Allows mediating all data accesses by modules
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Overview of Granary

 Add kernel and module wrappers and 
watchpoints 
 Granary starts at module wrapper

 Granary stops at kernel wrapper 

 Minimal overhead when kernel is running

 Wrappers allow adding arbitrary 
integrity checking instrumentation code

 Watchpoints allow instrumenting data 
accesses
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Using Wrappers to Ensure Integrity

 Runtime checker enforces CFI
 CFI: Execution only follows paths determined 

by the static control-flow graph (CFG)

 Checker integrated in the kernel and module 
wrappers

 Verifies the target address on any cross control 
transfer between kernel and the modules

 Maintains call-return consistency to protect 
from the return-oriented attacks

 Verifies function call arguments to maintain 
argument integrity
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Using Watchpoints to Instrument Data 
Accesses
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 Designing address watchpoints
 Instrument data accesses by mangling memory addresses

 Triggers the invocation of a type-specific function when 
watched memory address is dereferenced to access object

 Support millions of object-granularity watchpoints

 Addresses limitations of h/w watchpoints

 Example
 When a module (e.g., a file sytem module) accesses any inode, 

an inode-specific watchpoint function is invoked



Watchpoint Applications
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 Detecting kernel buffer overflows

 Detecting read-before-write bugs, double 
free bugs

 Detecting memory leaks using garbage 
collector

 Debugging usage bugs, e.g., RCU bugs

 Enforcing fine-grained memory access 
policies

 Ensuring kernel data structure integrity



Evaluation

 Goal: Measure CPU overhead of selective 
instrumentation

 Preliminary evaluation with a microbenchmark
 Data-centric instrumentation on objects primarily 

accessed by the Ext3 file system module

 Ran iozone file system benchmark
 We mounted Ext3 file system on a 2 GB ramdisk

 Buffer cache disabled
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 Watched roughly 30% of all object accesses to 
Ext3 allocated objects

 8% average overhead

Native execution
Address 
Watchpoints



Current Status
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 Building a system called Granary that allows 
 Analyzing bugs/vulnerabilities in the Linux kernel

 Enables securing kernel against module code

 Granary instruments binary Linux kernel modules
 Uses wrappers for interposing on all code crossing the 

kernel/module boundary

 Granary uses watchpoints for interposing on data accesses

 Enables highly selective code, data instrumentation

 Preliminary evaluation shows low overhead



Future Work
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 Improvements in instrumentation performance
 Improve watchpoint performance

 Optimize instrumentation tools

 Build rich set of tools
 Detect kernel buffer overflows, memory corruption, privilege 

escalation

 Enforce fine-grained memory access policies to ensure kernel 
data structure integrity

 Perform experimentation
 Whether it detects known rootkits

 Whether it generates false alarms for benign modules



Deliverables
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 We will make the following available:
 All code for Granary

 All code for analyzing and testing module behavior

 All Granary tools

 Maturity level
 All this code will run on standard x86 machines, running a 

standard Linux kernel, Granary requires installing a module

 Target deployment
 System administrators deploy Granary tools

 Developers create vulnerability analysis, detection tools



Thanks!
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 Questions
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