
Securing Operating
Systems Against
Advanced Malware

Ashvin Goel
University of Toronto

Advanced Host Level Surveillance (AHLS)
DRDC AHLS Workshop

Feb 06, 2013

Protecting Operating Systems

 Operating system kernel is fully privileged

 Kernel compromises are devastating
 Remote attacker takes control of (i.e., owns)

machine

 Local user gets root privilege

2

Attacking the Kernel

3

 Gain limited access to the system
 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access
 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program

Attacking the Kernel

4

 Gain limited access to the system
 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access
 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program

 Exploit kernel vulnerability

Linux Kernel Vulnerabilities

5

 Vulnerabilities are routinely discovered in
Linux

 CVE security vulnerability database for last 3
years

 Why are vulnerabilities increasing?

Year # of
vulnerabiliti
es

Do
S

Code
executio
n

Overflo
w

Memory
corruptio
n

Bypas
s
check
s

Gain
info.

Gain
privilege
s

2011 83 62 1 21 10 1 21 9

2012 115 83 4 24 10 6 19 11

2013 190 101 6 41 13 11 58 26

Linux Kernel Complexity

6

 Growth in code size
 Palix, ASPLOS 2011

 Many new drivers!

 More swearing
 Vidar Holen, 2012

 Bugs and
vulnerabilities are
inevitable

200

150

100

50

$^&@
!%&%!
*&#@
$%!^%*
penguin

S
w

e
ar

 C
ou

nt

1.0 2.1.2 2.3.36 2.6.12 2.6.24 2.6.36

Kernel Threat Landscape

7

 Fastest rising threat in last 2 years is mobile malware
 Typical mobile malware uses fake programs, adware

 Most common platform is Android (runs Linux variant)

 Mcafee: 35000 collected in 2013, expected to double in 2013

 Users deceived into installing these programs from third-party sites

 Social engineering + kernel vulnerability: deadly
 Initially, programs would send premium SMS messages

 Andr/KongFu-L is a fake Angry Birds program

 Exploits kernel vulnerability in Gingerbread to gain root access,
communicate with remote sites, install additional malware

 Backdoor.AndroidOS.Obad is very sophisticated

 Uses encryption, obfuscation, exploits multiple kernel vulnerabilities to
obtain device administrator privileges, impossible to remove

Residing in the Kernel

8

 Gain limited access to the system

 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access

 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program

 Exploit kernel vulnerability

 Take steps to continue accessing the system
 Install kernel rootkit

Kernel Rootkits

9

 A kernel exploit that is designed to hide its presence
 May open backdoors, steal information or actively disable

kernel-based defenses

 Often installed using social engineering
 Example: Sony rootkit

 In 2005, Sony provided a music player on Windows

 Player installed a kernel rootkit that limited the user’s ability to access a
CD

 Unfortunately, other kernel malware then took advantage of a
vulnerability in this rootkit

 When Sony attempted to uninstall its rootkit, it exposed users to an even
more serious vulnerability

How do Kernel Rootkits Work?

10

 Modern kernels allow installing third-party, untrusted
modules to extend kernel functionality
 Loaded on demand, e.g., when USB camera is plugged in

 Executed with the same privileges as the core kernel

 A kernel rootkit can either be
 A malicious module, or

 A benign, vulnerable module that has been subverted

 After rootkit is installed, it can fully control the machine,
because it runs with the highest privileges

Understanding Rootkits

11

 A “perfect rootkit” is similar to a “perfect crime”: one
that nobody realizes has taken place

 Rootkits have complete access to kernel code & data
 Install or modify other module or core kernel code

 Replace system calls, disable page protection

 Load code into user processes

 Conceal running processes, installed modules, files

 Tamper with event logging facility

 Bypass tools that monitor system calls or file modifications
because they can execute entirely in kernel context

Access to Code and Data

 Kernel modules call core kernel functions,
core kernel calls module functions

 Kernel modules share data with kernel,
e.g., stack

12

// Kernel code

void spin_lock_init(spinlock_t
*lock)
{
 lock->v = 0;
}

// Correct module code

spinlock_t mylock;
spin_lock_init(&mylock)
;

Module
code

Kernel memory
Module
memory

Core kernel
code

Attack

 Attacker tricks kernel to overwrite UID to
root

 Similarly, attacker can trick kernel to call
kernel functions of their choosing

13

// Kernel code

void spin_lock_init(spinlock_t
*lock)
{
 lock->v = 0;
}

Module
code

Kernel memory
Module
memory

Core kernel
code

// Malicious module
code

spin_lock_init(&thread-
>uid);

Thread
UID

Privilege
escalation!

Goals of Project

14

 Goal is to protect operating system kernels
 Analyze and detect kernel bugs and vulnerabilities

 Protect kernel against module code

 Vulnerable modules

 E.g., module calls unexported function, overwrites kernel stack

 Need to detect disallowed behavior

 Malicious modules (rootkits)

 E.g., CD module calls exported network send function

 Need to detect anomalous behavior

 Requires understanding module behavior

 What modules do, what they should be allowed to do

Challenges

 Kernel APIs are not written defensively
 Assume modules obey implicit rules

 Do not check arguments, permissions, etc.

 Modules cannot be trusted to follow rules
 Module can trick kernel into performing unexpected actions

 Existing solutions
 Anti-virus software protects against user-level malware

 Can be disabled by kernel malware

15

Approach

 Instrument all module related code at runtime using
dynamic binary translation (DBT)
 Rewrite binary module code on-the-fly during execution

 Operates at instruction granularity

 Provides complete control over program execution

 Requires no module sources to be available

 Building a system called Granary

 Two key ideas
 Add module and kernel interface wrappers

 Allows mediating all control transfers between kernel and modules

 Verify memory accesses by modules using watchpoints

 Allows mediating all data accesses by modules

16

Overview of Granary

 Add kernel and module wrappers and
watchpoints
 Granary starts at module wrapper

 Granary stops at kernel wrapper

 Minimal overhead when kernel is running

 Wrappers allow adding arbitrary
integrity checking instrumentation code

 Watchpoints allow instrumenting data
accesses

17

Kernel
Granar

y

Untrusted
modules

Application Application

Untrusted
modules

Module wrapper

Kernel wrapper

enter exit

Instrumented code
Data watchpoint

Using Wrappers to Ensure Integrity

 Runtime checker enforces CFI
 CFI: Execution only follows paths determined

by the static control-flow graph (CFG)

 Checker integrated in the kernel and module
wrappers

 Verifies the target address on any cross control
transfer between kernel and the modules

 Maintains call-return consistency to protect
from the return-oriented attacks

 Verifies function call arguments to maintain
argument integrity

18

Kernel
Granar

y

Untrusted
modules

Application Application

Untrusted
modules

Module wrapper

Kernel wrapper

Instrumented code

Runtime Checker

Using Watchpoints to Instrument Data
Accesses

19

 Designing address watchpoints
 Instrument data accesses by mangling memory addresses

 Triggers the invocation of a type-specific function when
watched memory address is dereferenced to access object

 Support millions of object-granularity watchpoints

 Addresses limitations of h/w watchpoints

 Example
 When a module (e.g., a file sytem module) accesses any inode,

an inode-specific watchpoint function is invoked

Watchpoint Applications

20

 Detecting kernel buffer overflows

 Detecting read-before-write bugs, double
free bugs

 Detecting memory leaks using garbage
collector

 Debugging usage bugs, e.g., RCU bugs

 Enforcing fine-grained memory access
policies

 Ensuring kernel data structure integrity

Evaluation

 Goal: Measure CPU overhead of selective
instrumentation

 Preliminary evaluation with a microbenchmark
 Data-centric instrumentation on objects primarily

accessed by the Ext3 file system module

 Ran iozone file system benchmark
 We mounted Ext3 file system on a 2 GB ramdisk

 Buffer cache disabled

21

22

 Watched roughly 30% of all object accesses to
Ext3 allocated objects

 8% average overhead

Native execution
Address
Watchpoints

Current Status

23

 Building a system called Granary that allows
 Analyzing bugs/vulnerabilities in the Linux kernel

 Enables securing kernel against module code

 Granary instruments binary Linux kernel modules
 Uses wrappers for interposing on all code crossing the

kernel/module boundary

 Granary uses watchpoints for interposing on data accesses

 Enables highly selective code, data instrumentation

 Preliminary evaluation shows low overhead

Future Work

24

 Improvements in instrumentation performance
 Improve watchpoint performance

 Optimize instrumentation tools

 Build rich set of tools
 Detect kernel buffer overflows, memory corruption, privilege

escalation

 Enforce fine-grained memory access policies to ensure kernel
data structure integrity

 Perform experimentation
 Whether it detects known rootkits

 Whether it generates false alarms for benign modules

Deliverables

25

 We will make the following available:
 All code for Granary

 All code for analyzing and testing module behavior

 All Granary tools

 Maturity level
 All this code will run on standard x86 machines, running a

standard Linux kernel, Granary requires installing a module

 Target deployment
 System administrators deploy Granary tools

 Developers create vulnerability analysis, detection tools

Thanks!

26

 Questions

	Slide 1
	Protecting Operating Systems
	Attacking the Kernel
	Attacking the Kernel
	Linux Kernel Vulnerabilities
	Linux Kernel Complexity
	Kernel Threat Landscape
	Residing in the Kernel
	Kernel Rootkits
	How do Kernel Rootkits Work?
	Understanding Rootkits
	Access to Code and Data
	Attack
	Goals of Project
	Challenges
	Approach
	Overview of Granary
	Using Wrappers to Ensure Integrity
	Using Watchpoints to Instrument Data Accesses
	Watchpoint Applications
	Evaluation
	Slide 22
	Current Status
	Future Work
	Deliverables
	Thanks!

