
Securing Operating 
Systems Against 
Advanced Malware  

Ashvin Goel
University of Toronto

Advanced Host Level Surveillance (AHLS)
DRDC AHLS Workshop

Feb 06, 2013



Protecting Operating Systems

 Operating system kernel is fully privileged

 Kernel compromises are devastating
 Remote attacker takes control of (i.e., owns) 

machine

 Local user gets root privilege

2



Attacking the Kernel

3

 Gain limited access to the system
 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access
 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program



Attacking the Kernel

4

 Gain limited access to the system
 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access
 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program

 Exploit kernel vulnerability



Linux Kernel Vulnerabilities

5

 Vulnerabilities are routinely discovered in 
Linux

 CVE security vulnerability database for last 3 
years

 Why are vulnerabilities increasing?

Year # of 
vulnerabiliti
es

Do
S

Code 
executio
n 

Overflo
w

Memory 
corruptio
n

Bypas
s 
check
s

Gain 
info.

Gain 
privilege
s

2011 83 62 1 21 10 1 21 9

2012 115 83 4 24 10 6 19 11

2013 190 101 6 41 13 11 58 26



Linux Kernel Complexity

6

 Growth in code size
 Palix, ASPLOS 2011

 Many new drivers!

 More swearing
 Vidar Holen, 2012

 Bugs and 
vulnerabilities are 
inevitable

200

150

100

50

$^&@
!%&%!
*&#@
$%!^%*
penguin

S
w

e
ar

 C
ou

nt

1.0 2.1.2 2.3.36 2.6.12 2.6.24 2.6.36



Kernel Threat Landscape

7

 Fastest rising threat in last 2 years is mobile malware
 Typical mobile malware uses fake programs, adware

 Most common platform is Android (runs Linux variant)

 Mcafee: 35000 collected in 2013, expected to double in 2013

 Users deceived into installing these programs from third-party sites

 Social engineering + kernel vulnerability: deadly
 Initially, programs would send premium SMS messages

 Andr/KongFu-L is a fake Angry Birds program

 Exploits kernel vulnerability in Gingerbread to gain root access, 
communicate with remote sites, install additional malware

 Backdoor.AndroidOS.Obad is very sophisticated

 Uses encryption, obfuscation, exploits multiple kernel vulnerabilities to 
obtain device administrator privileges, impossible to remove



Residing in the Kernel

8

 Gain limited access to the system

 Exploit a known software vulnerability

 Crack weak passwords

 Steal passwords

 Buffer overflow in user-level software

 Using social engineering

 E.g., deceive user into installing malicious program

 Escalate privileges to gain elevated access

 Exploit vulnerability in privileged programs

 E.g., get root shell by targeting vulnerable setuid program

 Exploit kernel vulnerability

 Take steps to continue accessing the system
 Install kernel rootkit



Kernel Rootkits

9

 A kernel exploit that is designed to hide its presence
 May open backdoors, steal information or actively disable 

kernel-based defenses

 Often installed using social engineering
 Example: Sony rootkit

 In 2005, Sony provided a music player on Windows

 Player installed a kernel rootkit that limited the user’s ability to access a 
CD

 Unfortunately, other kernel malware then took advantage of a 
vulnerability in this rootkit

 When Sony attempted to uninstall its rootkit, it exposed users to an even 
more serious vulnerability



How do Kernel Rootkits Work?

10

 Modern kernels allow installing third-party, untrusted 
modules to extend kernel functionality
 Loaded on demand, e.g., when USB camera is plugged in

 Executed with the same privileges as the core kernel

 A kernel rootkit can either be
 A malicious module, or

 A benign, vulnerable module that has been subverted

 After rootkit is installed, it can fully control the machine, 
because it runs with the highest privileges



Understanding Rootkits

11

 A “perfect rootkit” is similar to a “perfect crime”: one 
that nobody realizes has taken place

 Rootkits have complete access to kernel code & data
 Install or modify other module or core kernel code

 Replace system calls, disable page protection

 Load code into user processes

 Conceal running processes, installed modules, files

 Tamper with event logging facility

 Bypass tools that monitor system calls or file modifications 
because they can execute entirely in kernel context



Access to Code and Data

 Kernel modules call core kernel functions, 
core kernel calls module functions

 Kernel modules share data with kernel, 
e.g., stack

12

// Kernel code

void spin_lock_init(spinlock_t 
*lock)
{
  lock->v = 0;
}

// Correct module code

spinlock_t mylock;
spin_lock_init(&mylock)
;

Module 
code

Kernel memory
Module 
memory

Core kernel
code



Attack

 Attacker tricks kernel to overwrite UID to 
root

 Similarly, attacker can trick kernel to call 
kernel functions of their choosing

13

// Kernel code

void spin_lock_init(spinlock_t 
*lock)
{
  lock->v = 0;
}

Module 
code

Kernel memory
Module 
memory

Core kernel
code

// Malicious module 
code

spin_lock_init(&thread-
>uid);

Thread 
UID

Privilege 
escalation!



Goals of Project

14

 Goal is to protect operating system kernels
 Analyze and detect kernel bugs and vulnerabilities

 Protect kernel against module code

 Vulnerable modules

 E.g., module calls unexported function, overwrites kernel stack

 Need to detect disallowed behavior

 Malicious modules (rootkits)

 E.g., CD module calls exported network send function

 Need to detect anomalous behavior

 Requires understanding module behavior

 What modules do, what they should be allowed to do



Challenges

 Kernel APIs are not written defensively
 Assume modules obey implicit rules

 Do not check arguments, permissions, etc.

 Modules cannot be trusted to follow rules
 Module can trick kernel into performing unexpected actions

 Existing solutions
 Anti-virus software protects against user-level malware

 Can be disabled by kernel malware

15



Approach

 Instrument all module related code at runtime using 
dynamic binary translation (DBT)
 Rewrite binary module code on-the-fly during execution

 Operates at instruction granularity

 Provides complete control over program execution

 Requires no module sources to be available

 Building a system called Granary

 Two key ideas
 Add module and kernel interface wrappers

 Allows mediating all control transfers between kernel and modules

 Verify memory accesses by modules using watchpoints

 Allows mediating all data accesses by modules

16



Overview of Granary

 Add kernel and module wrappers and 
watchpoints 
 Granary starts at module wrapper

 Granary stops at kernel wrapper 

 Minimal overhead when kernel is running

 Wrappers allow adding arbitrary 
integrity checking instrumentation code

 Watchpoints allow instrumenting data 
accesses

17

Kernel
Granar

y

Untrusted 
modules

Application Application

Untrusted 
modules

Module wrapper

Kernel wrapper

enter exit

Instrumented  code
Data watchpoint



Using Wrappers to Ensure Integrity

 Runtime checker enforces CFI
 CFI: Execution only follows paths determined 

by the static control-flow graph (CFG)

 Checker integrated in the kernel and module 
wrappers

 Verifies the target address on any cross control 
transfer between kernel and the modules

 Maintains call-return consistency to protect 
from the return-oriented attacks

 Verifies function call arguments to maintain 
argument integrity

18

Kernel
Granar

y

Untrusted 
modules

Application Application

Untrusted 
modules

Module wrapper

Kernel wrapper

Instrumented  code

Runtime Checker



Using Watchpoints to Instrument Data 
Accesses

19

 Designing address watchpoints
 Instrument data accesses by mangling memory addresses

 Triggers the invocation of a type-specific function when 
watched memory address is dereferenced to access object

 Support millions of object-granularity watchpoints

 Addresses limitations of h/w watchpoints

 Example
 When a module (e.g., a file sytem module) accesses any inode, 

an inode-specific watchpoint function is invoked



Watchpoint Applications

20

 Detecting kernel buffer overflows

 Detecting read-before-write bugs, double 
free bugs

 Detecting memory leaks using garbage 
collector

 Debugging usage bugs, e.g., RCU bugs

 Enforcing fine-grained memory access 
policies

 Ensuring kernel data structure integrity



Evaluation

 Goal: Measure CPU overhead of selective 
instrumentation

 Preliminary evaluation with a microbenchmark
 Data-centric instrumentation on objects primarily 

accessed by the Ext3 file system module

 Ran iozone file system benchmark
 We mounted Ext3 file system on a 2 GB ramdisk

 Buffer cache disabled

21



22

 Watched roughly 30% of all object accesses to 
Ext3 allocated objects

 8% average overhead

Native execution
Address 
Watchpoints



Current Status

23

 Building a system called Granary that allows 
 Analyzing bugs/vulnerabilities in the Linux kernel

 Enables securing kernel against module code

 Granary instruments binary Linux kernel modules
 Uses wrappers for interposing on all code crossing the 

kernel/module boundary

 Granary uses watchpoints for interposing on data accesses

 Enables highly selective code, data instrumentation

 Preliminary evaluation shows low overhead



Future Work

24

 Improvements in instrumentation performance
 Improve watchpoint performance

 Optimize instrumentation tools

 Build rich set of tools
 Detect kernel buffer overflows, memory corruption, privilege 

escalation

 Enforce fine-grained memory access policies to ensure kernel 
data structure integrity

 Perform experimentation
 Whether it detects known rootkits

 Whether it generates false alarms for benign modules



Deliverables

25

 We will make the following available:
 All code for Granary

 All code for analyzing and testing module behavior

 All Granary tools

 Maturity level
 All this code will run on standard x86 machines, running a 

standard Linux kernel, Granary requires installing a module

 Target deployment
 System administrators deploy Granary tools

 Developers create vulnerability analysis, detection tools



Thanks!

26

 Questions


	Slide 1
	Protecting Operating Systems
	Attacking the Kernel
	Attacking the Kernel
	Linux Kernel Vulnerabilities
	Linux Kernel Complexity
	Kernel Threat Landscape
	Residing in the Kernel
	Kernel Rootkits
	How do Kernel Rootkits Work?
	Understanding Rootkits
	Access to Code and Data
	Attack
	Goals of Project
	Challenges
	Approach
	Overview of Granary
	Using Wrappers to Ensure Integrity
	Using Watchpoints to Instrument Data Accesses
	Watchpoint Applications
	Evaluation
	Slide 22
	Current Status
	Future Work
	Deliverables
	Thanks!

