

Host-Based Anomaly Detection

Wahab Hamou-Lhadj, PhD, ing.
Software Behaviour Analysis (SBA) Research Lab
ECE, Concordia University
Montreal, QC, Canada
wahab.hamou-lhadj@concordia.ca

Feb. 6, 2014 Ottawa, ON, Canada

Objectives

- Protect host systems against cyber-attacks (webbased exploitation, simulated social engineering, etc.)
- Model system health and develop modular, adaptive, and scalable Anomaly Detection Systems (ADS) at the system call level
- Reduce false positives (alarms) and improve the true positives
- Provide preliminary analysis/recommendations for future research and directions

Background on ADS

- Monitors computer or network activity for signs of intrusions and alert administrators
- Signature based Detection
 - Looks for known patterns
 - Detects only known attacks
- Anomaly Detection
 - Looks for deviations from normal behavior
 - Detects even unknown attacks (zero day exploits)

Existing Work

- Several techniques have been used to model the normal behavior of a system
 - Sliding window technique
 - HMM
 - Neural networks (two-class)
 - Clustering
 - Varied length n-gram technique
 - Context Free Grammar

Example: Sliding Approach (STIDE)

Challenges – False alarms

- High false alarms reduce confidence and could lead to deactivation of the ADS
- Causes:
 - Unrepresentative normal data for training and attack data for validation and testing
 - Inappropriate model or feature selection
 - Poor optimization of models parameters
 - Over fitting (leads to poor generalization)
 - Inadequate assumptions such as static environments

Challenges: Adaptability

- ADSs are often designed using limited data
 - collection and analysis of representative data from each process (different versions, OS, etc.) is costly

Anomaly detector will have incomplete view of normal system behavior

In Practice

- Dynamic environment
 - Changes in normal process behavior due, for instance, to application update

Internal model of normal behavior diverges with respect to the underlying data

ADS Requirements

- > ADS should:
 - Account for rare normal events (false alarms)
 - Be scalable and modular: can add, replace or remove models or features over time
 - Handle large data spaces
 - Accommodate new data

Advanced Host-Level Surveillance

Advanced Host-Level Surveillance

Kernel State Modeling (KSM)

- KSM is an anomaly detection technique
 - Transforms system calls into kernel modules, called states
 - Detect anomalies at the level of interaction of kernel states
 - Reduces data space used in training and testing
 - Favors efficiency while keeping accuracy

Transforming System Calls into States of Kernel Modules

State	Module in Linux Source Code	# of System Calls	
AC	Architecture	10	
FS	File System	131	
IPC	Inter Process Communication	7	
KL	Kernel	127	
MM	Memory Management	21	
NT	Networking	2	
SC	Security	3	
UN	Unknown	37	

[Source]: http://syscalls.kernelgork.com

KSM and Density Plots

Anomaly Detection in Firefox

Anomaly Detection in Login Utility

Automatically Detecting Anomalies

- To determine significant deviation threshold (alpha):
 - Divide normal dataset into training set, validation set, and testing set
 - Extract probabilities from training set
 - Evaluate on validation set and adjust alpha
 - Measure accuracy on testing set

Case Study 1: ADFA Linux Dataset

- A host with Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5, TikiWiki 8.1, FTP server, MySQL 14.14 and an SSH server
 - web-based exploitation
 - simulated social engineering
 - poisoned executable,
 - remotely triggered vulnerabilities,
 - remote password brute force attacks
 - system manipulation

Case Study 1: ADFA Linux Dataset

Training Set			
# of training traces	833		
Validation Set			
# of attacks	20		
# of normal traces	1000		
Testing Set			
# of attacks	40		
# of normal traces	3373		

Receiver Operating Characteristics

(ROC) Curves

 True Positive: anomaly detected as anomaly

 False Positive: normal detected as anomaly

Case Study 1: ADFA Linux Dataset

Case Study 2: Dataset

Program	# Normal Traces			#Attack	#Attack
	Training	Validation	Testing	Types	Traces
Login	4	3	5	1	4
PS	10	4	10	1	15
Stide	400	200	13126	1	105
Xlock	91	30	1610	1	2
Firefox	125	75	500	5	19

Case Study 2: Results

Program	Technique	TP rate	FP rate
Login	KSM (alpha=0.00)	100%	0.00%
	Stide (win=6)	100%	40.00%
	Stide (win=10)	100%	40.00%
	HMM (states=10)	100%	40.00%
PS	KSM (alpha=0.02)	100%	10.00%
	Stide (win=6)	100%	10.00%
	Stide (win=10)	100%	10.00%
	HMM (states=5)	100%	30.00%
Xlock	KSM (alpha=0.04)	100%	0.00%
	Stide (win=6)	100%	1.50%
	Stide (win=10)	100%	1.50%
	HMM (states=5)	100%	0.00%

Case Study 2: Results

Program	Technique	TP rate	FP rate
Stide	KSM (alpha=0.06)	100%	0.25%
	Stide (win=6)	100%	4.97%
	Stide (win=10)	100%	5.25%
	HMM (states=5)	100%	0.25%
Firefox	KSM (alpha=0.08)	100%	0.60%
	Stide (win=6)	100%	44.60%
	Stide (win=10)	100%	49.20%
	HMM (states=5)	100%	1.40%

Case Study 2: Execution Time

	Size of All Traces	KSM	Stide	HMM
Login	26.2KB	4.46 sec	0.03 sec	56.43 min
PS	29.6KB	5.14 sec	0.11 sec	46.24 min
Xlock	47.4MB	1.51 min	12.3 min	13.37 hr
Stide	36.2MB	5.85 min	8.53 min	2.3 day
Firefox	270.6MB	9.35 min	4.17 hr	4.03 day

Research Threads

Model Combination

- A single classifier or model may not provide a good approximation to the underlying data structure or distribution
 - No dominant classifier for all data distributions ("no free lunch" theorem)
 - True data distribution is usually unknown
 - Limited amount of (labeled) data is typically provided during training

IBC: Iterative Boolean Combination in the ROC Space

- For each threshold from the first detector and each threshold from the second detector:
 - Combine the responses using all Boolean functions
 - Select thresholds and Boolean functions that improve the ROC space

IBC - Example

Experimental Methodology

Training Set			
# of training traces	833		
Validation Set			
# of attacks	20		
# of normal traces	1000		
Testing Set			
# of attacks	40		
# of normal traces	3373		

Combination of Responses from Different HMMs

Combination of HMM and STIDE Responses

Research Threads

TotalADS

- TotalADS is an integrated Anomaly Detection System Environment
 - Eclipse Plug-in
 - Open Source
 - Based on TMF (Tracing and Monitoring Framework)
 - Supports STIDE, HMM, KSM, IBC
 - Supports a combination of classifiers
 - Supports trace analysis and forensic analysis
 - Supports CTF (Common Trace Format)

Architecture

Conclusion

- Research threads: Data preparation, data abstraction, adaptive learning, and infrastructure
- ADS requirements: low false positive rate, scalability, and adaptability
- KSM: Abstraction is not the enemy of accuracy
- IBC: Combining detectors provides better results than using a single detector
- TotalADS: An environment for integrating multiple anomaly detection systems

Future Plans

- Continue experimenting with KSM and IBC on other datasets (preferably generated at DRDC)
- Combine additional detectors using IBC
- Start working on adaptive/incremental learning
- Continue improving the maturity level of TotalADS
- Integrate this work with work done at other universities
- Transfer knowledge to DRDC

Thank You

Wahab Hamou-Lhadj, PhD, ing.
Software Behaviour Analysis (SBA) Research Lab
Concordia University
Montreal, QC, Canada

www.ece.concordia.ca/~abdelw/sba

