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Objectives

» Protect host systems against cyber-attacks (web-
based exploitation, simulated social engineering, etc.)

» Model system health and develop modular,
adaptive, and scalable Anomaly Detection Systems
(ADS) at the system call level

» Reduce false positives (alarms) and improve the
true positives

» Provide preliminary analysis/recommendations for
future research and directions
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Background on ADS

» Monitors computer or network activity for signs of
Intrusions and alert administrators

» Signature based Detection

= Looks for known patterns
= Detects only known attacks

» Anomaly Detection

= Looks for deviations from normal behavior
= Detects even unknown attacks (zero day exploits)
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Existing Work

» Several technigues have been used to model
the normal behavior of a system
= Sliding window technigque
= HMM

= Neural networks (two-class)

= Clustering

= Varied length n-gram technique
= Context Free Grammar
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Challenges — False alarms

» High false alarms reduce confidence and could
lead to deactivation of the ADS

» Causes:

= Unrepresentative normal data for training and
attack data for validation and testing

= |nappropriate model or feature selection
= Poor optimization of models parameters
= Qver fitting (leads to poor generalization)

= |nadequate assumptions such as static
environments
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Challenges: Adaptability

« ADSs are often designed using limited data

— collection and analysis of representative data from
each process (different versions, OS, etc.) is costly
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(false alarms)
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will have
Incomplete view
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Modeled
Behavior




In Practice

* Dynamic environment

— Changes in normal process behavior due, for
Instance, to application update

Old Normal False negatives New Normal
Behavior

False alarms Dehavior

Internal model of
normal behavior
diverges with
respect to the
underlying data
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ADS Requirements

» ADS should:

= Account for rare normal events (false alarms)

= Be scalable and modular: can add, replace or
remove models or features over time

= Handle large data spaces
= Accommodate new data
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Advanced Host-Level Survelllance
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Kernel State Modeling (KSM)

« KSM is an anomaly detection
technique

— Transforms system calls into
kernel modules, called states

— Detect anomalies at the level of
Interaction of kernel states

— Reduces data space used in
training and testing

— Favors efficiency while keeping
accuracy
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Transforming System Calls into
States of Kernel Modules

Module in Linux Source Code # of System Calls

State
AC Architecture 10
FS File System 131
IPC Inter Process Communication 7
KL Kernel 127
MM Memory Management 21
NT Networking 2
SC Security 3
UN Unknown 37

[Source]: http://syscalls.kernelgork.com =
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KSM and Density Plots
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Anomaly Detection In Firefox
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Anomaly Detection in Login Utility
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Automatically Detecting
Anomalies

* To determine significant deviation threshold
(alpha):
— Divide normal dataset into training set, validation
set, and testing set
— Extract probabilities from training set
— Evaluate on validation set and adjust alpha
— Measure accuracy on testing set




Case Study 1: ADFA Linux Dataset

» A host with Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5,

Tikiwiki 8.1, FTP server, MySQL 14.14 and an SSH
server

= web-based exploitation

= simulated social engineering

= poisoned executable,

= remotely triggered vulnerabilities,

= remote password brute force attacks
= system manipulation

%Conco rdia




Case Study 1: ADFA Linux Dataset

Training Set
# of training traces 833
Validation Set
# of attacks 20
# of normal traces 1000
Testing Set
# of attacks 40

# of normal traces 3373
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Recelver Operating Characteristics
(ROC) Curves
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Case Study 1: ADFA Linux Dataset
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Case Study 2: Dataset

Program # Normal Traces #Attack #Attack

Training  Validation Testing Types  Traces

Login 4 3 5 1 4
PS 10 4 10 1 15
Stide 400 200 13126 1 105
Xlock 91 30 1610 1 2
Firefox 125 75 500 5 19
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Case Study 2: Results

Program
Login

PS

Xlock

Technique
KSM (alpha=0.00)
Stide (win=6)
Stide (win=10)
HMM (states=10)
KSM (alpha=0.02)
Stide (win=6)
Stide (win=10)
HMM (states=5)
KSM (alpha=0.04)
Stide (win=6)
Stide (win=10)
HMM (states=5)

TP rate FP rate

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

0.00%
40.00%
40.00%
40.00%
10.00%
10.00%
10.00%
30.00%
0.00%
1.50%
1.50%
0.00%
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Case Study 2: Results

Program Technique TP rate FPrate
Stide KSM (alpha=0.06) 100% 0.25%
Stide (win=6) 100% 4.97%
Stide (win=10) 100% 5.25%
HMM (states=5) 100% 0.25%
Firefox KSM (alpha=0.08) 100% 0.60%
Stide (win=6) 100% 44.60%
Stide (win=10) 100% 49.20%
HMM (states=5) 100% 1.40%
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Case Study 2: Execution Time

Login
PS

Xlock
Stide
Firefox

Size of All

Traces

26.2KB
29.6KB

47.4MB
36.2MB
270.6MB

KSM

4.46 sec
5.14 sec

1.51 min
5.85 min
9.35 min

Stide

0.03 sec
0.11 sec

12.3 min
8.53 min
4.17 hr

HMM

56.43 min
46.24 min

13.37 hr
2.3 day
4.03 day
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Research Threads
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Model Combination

» A single classifier or model may not provide a good
approximation to the underlying data structure or
distribution

* No dominant classifier for all data distributions (“no
free lunch” theorem)

« True data distribution is usually unknown

 Limited amount of (labeled) data is typically
provided during training




IBC: lterative Boolean Combination
In the ROC Space

» For each threshold from the first detector and
each threshold from the second detector:

= Combine the responses using all Boolean
functions

= Select thresholds and Boolean functions that
iImprove the ROC space




IBC - Example
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Experimental Methodology

Training Set
# of training traces 833
Validation Set
# of attacks 20
# of normal traces 1000
Testing Set
# of attacks 40

# of normal traces 3373
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Combination of Responses from
Different HMMs
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Combination Results on Validation Set

True positive rate

M. : HMM(N=200), auc=0.933
| M,: HMM(N=20), auc=0.845
/ e IBC(M1, Mz)’ auc=0.986
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False alarm rate
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Combination Results on Test Set

True positive rate

M1: HMM(N=200), auc=0.919
| ME: HMM(N=20), auc=0.818
/| —e—IBC(M_, M,), auc=0.977

s Creech & Hu 2013, auc=0.954
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False alarm rate
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Combination of HMM and STIDE
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Combination Results on Validation Set
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Combination Results on Test Set

True positive rate

M. : HMM(N=200), auc=0.919
ME: STIDE(WS=5), auc=0.962
—e— IBC(M,, M,), auc=0.987

----- Creech & Hu 2013, auc=0.954
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False alarm rate
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Research Threads
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TotalADS

» TotalADS is an integrated Anomaly Detection
System Environment
= Eclipse Plug-in
= Open Source
= Based on TMF (Tracing and Monitoring Framework)
= Supports STIDE, HMM, KSM, IBC
= Supports a combination of classifiers
= Supports trace analysis and forensic analysis
= Supports CTF (Common Trace Format)
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Architecture
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Conclusion

» Research threads: Data preparation, data abstraction,
adaptive learning, and infrastructure

» ADS requirements: low false positive rate, scalability,
and adaptability

KSM: Abstraction is not the enemy of accuracy

IBC:. Combining detectors provides better results than
using a single detector

» TotalADS: An environment for integrating multiple
anomaly detection systems
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Future Plans

Continue experimenting with KSM and IBC on
other datasets (preferably generated at DRDC)

Combine additional detectors using IBC
Start working on adaptive/incremental learning
Continue improving the maturity level of TotalADS

Integrate this work with work done at other
universities

Transfer knowledge to DRDC
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