Advanced Host-Level Surveillance

Surveillance of / with Small-scale systems

Chamseddine Talhi École de technologie supérieure (ÉTS), Montreal

Department of Software Engineering and Information Technology

Agenda

- Project Presentation
- Why surveillance of/with small-scale systems?
- Surveillance of Small-scale Systems
- Surveillance with Small-scale Systems
- Project Summary
- Feedback?

Agenda

- Project Presentation
- Why surveillance of/with small-scale systems?
- Surveillance of Small-scale Systems
- Surveillance with Small-scale Systems
- Project Summary
- Feedback?

Project Presentation

- New research thread to Advanced Host-Level
 - 1 year project! 2013/2014
- Team:
 - 1 professor
 - o 2 Master students
 - o 1 part time research professional
 - Part-time graduate/undergraduate students

Objectives:

- Surveillance of small-scale systems
- Use of massively parallel small-scale systems for the surveillance of other systems

Agenda

- Project Presentation
- Why surveillance of/with small-scale systems?
- Surveillance of Small-scale Systems
- Surveillance with Small-scale Systems
- Project Summary
- Feedback?

From Mobile Phones to general-purpose small devices

- « Cabir » 2004 : first mobile phone malware
- « CommWarrior » & « Doomboot » 2005 :
- And ...

2 years of mobile malware evolution <=>
20 years of Computer malware evolution!!!

More than 1 000 000 variants of malware targeting Android

Mobile malwares – Evolution

Kaspersky Lab

Mobile malwares – 2013 Statistics

Source: http://www.securelist.com/en/analysis/204792318/Kaspersky_Security_Bulletin_2013_Overall_statistics_for_2013#02_____

8

Small-scale systems are not limited to Smartphones!

- Linux/Android based devices.
- Shodan : Computer Search Engine

Popular Search Queries: D-Link Internet Camera - D-Link Internet Camera DCS-5300 series, without authentication. [g00gle 5c0u7]

Panhandle Elementary EMS Home Page

Building Set Points				
Outside Air Temp	105.6 'F			
Deadband	3.0 'F			
Override Time Setpt	120 min			
Heat Enable Set Point	65 °F			
Cool Enable Set Point	70 °F			
Unocc Heat Setpt	55 °F			
Unocc Cool Setpt	120 °F			

Shodan : Computer Search Engine Privacy? Security?

Malwares in Embedded Systems: next (r)evolution!

Year	Malware /attack	Target	Threats
2009 psyb0t		Linux-based routers and DSL modems	DDoS
2010 Chuck Norris Botnet		Linux-based routers, DLS modems	DDoS +DNS Spoofing
	Stuxnet	industrial control systems (ICS)	alter PLCs for supported facilities
2012	DNSChanger	computers and routers	DNS spoofing/poisoning
2013 JUL: GPS attack GPS		GPS based systems	total control of system
	Sept: Linux/Flasher	wireless routers	login credentials captured and transferred to remote web servers.
	Nov 26 : Linux.Darlloz	Linux-based computers, industrial control servers, routers, cameras, set-top boxes.	generates IP @ randomly, accesses a specific path on the machine with well-known ID and passwords, and semptings HTTP POST requests

Stuxnet Malware (2010)!

Country	Infected computers
Iran	58.85%
Indonesia	18.22%
India	8.31%
Azerbaijan	2.57%
United States	1.56%
Pakistan	1.28%
Others	9.2%

Resource Limitations

Low power CPUs

- Lightweight processing
- limited multitasking

Memory limited to Megabytes

Battery life

Agenda

- Project Presentation
- Why surveillance of/with small-scale systems?
- Surveillance of Small-scale Systems
- Surveillance with Small-scale Systems
- Project Summary
- Feedback?

Signature vs. Anomaly Detection - Challenges

Signature-based detection

- Best Multi pattern matching algorithms?
- *Optimization:* data structures and algorithms, compression, parallel programming, etc.
- Need for Cloud/Server: signatures Database storage, Remote scan.

Anomaly-based detection

- Machine Learning algorithms: accuracy (eg. false positives), overhead (eg., memory and power, etc.)
- Need for remote Cloud/Server: traces storage and exchange

Signature Detection: Multi Pattern Matching (1)

Empirical study

- Required memory budget : varying numbers of signatures.
- Dataset : Android malwares signatures (MD5 hash).
- Memory budget compared with available memory on a Samsung Galaxy S Vibrant phone.

Signature Detection: Multi Pattern Matching (2)

Empirical study Evolution of Smartphone Memory

year	phone model	memory size (MB)
2002	Blackberry 5810	1
2003	BlackBerry 7210	6
2004	Nokia 6630	10
2005	HTC Universal	64
2006	HTC TyTN 100	64
2007	Iphone	128
2008	HTC dream	192
2009	HTC Magic	288
2010	Samsung Galaxy S	512
2011	Samsung Galaxy S2	1024

Signature Detection: Multi Pattern Matching (3)

Empirical study

512 MB should be enough ... BUT

•	Memory reserved by hardware	= 32 MB
•	Android fixed components	= 80 MB
•	Launcher	= 30 MB
•	Live wallpaper	= 20 MB
•	5 widgets	= 20 MB
•	Android System	= 208 MB
٠	Available memory	= 121 MB!

Signature Detection: Multi Pattern Matching (4)

Empirical study

512 MB should enough ... BUT From 121 MB

- Video media player consumes 10.34MB
- internet browser consumes 31.07MB

Finally : Available memory is 88MB!!!

		ul 📋 🕱	🔰 2:08 PM
않 ications	Downloaded F	RAM	Storage
Active ap	oplications: 2	E	xit all
	i deos M: 10.34MB, CPU:	0.00%	Exit
the second se	M: 31.07MB CPU:	0.00%	Exit

Signature Detection: Multi Pattern Matching (5)

20

Signature Detection : Lessons learned

- Fast evolution of signatures database: memory of small-scale systems will never be enough!!!
- A subclass of most important signatures should be maintained
- subclasses of malwares => sub-databases
- Optimize, optimize,, and optimize

Anomaly Detection (1)

Analysis of sys call n-grams

- Look-ahead pairs
- n-gram Trees

Anomaly Detection : sys call n-gram Analysis (2)

23

Anomaly Detection : sys call n-gram Analysis (3)

Possible optimization : Sorted n-gram Tree

Most frequent n-grams of Angrybirds game

- N-grams sorted according to their frequency inside the normal model
- => Improve analysis time

Anomaly Detection : sys call n-gram Analysis (4)

Experimental results - injecting 3 function calls in an open source application

3 new function calls injected in the application : traces 43-48

Anomaly Detection : sys call n-gram Analysis (5)

Experimental results – Lookahead model Angrybird maliciously updated by Droid-KungFu malware

Maliciously updated Angrybird

"Safe" update of Angrybird

70

80

=> Windows >= 5 are good candidates for anomaly detection

90

100

3-grams 5-grams

7-grams 9-grams

Anomaly Detection : sys call n-gram Analysis (6)

Maliciously updated Angrybird

Experimental results – n-grams Model

"Safe" update of Angrybird

=> Windows >= 5 are good candidates for anomaly detection

3-grams

Anomaly Detection : sys call n-gram Analysis (7)

CPU Overhead

Anomaly Detection : sys call n-gram Analysis (8)

Memory Overhead

Signature vs. Anomaly Detection - Challenges

Signature-based detection

- Best Multi pattern matching algorithms?
- *Optimization:* data structures and algorithms, compression, parallel programming, etc.
- *Pragmatic approach:* periodicity, prioritized / specialized signatures, devices collaboration, alert-based, etc.
- Need for Cloud/Server: signatures Database storage, Remote scan.

Anomaly-based detection

- *Machine Learning algorithms:* accuracy (eg. false positives), overhead (eg., memory and power, etc.
- Adaptive approach: resource usage of the device, different speeds of the same algorithm, different algorithms, etc.
- Need for remote Cloud/Server: traces storage and exchange

Evaluation Boards

PandaBoard,

BeagleBoards

• Arndale Board,

Evaluation Boards : Use cases

BeagleBone Black:

- Spectrum Analyzer http://www.youtube.com/watch?v=6YhrKMBrJ2g
- Motor Controller <u>http://www.youtube.com/watch?v=34xJIR-mD4A</u>
- Game console <u>http://www.youtube.com/watch?v=U4P_s-7dDRQ</u>
- Web server <u>http://www.youtube.com/watch?v=CDhyVdpXuqQ</u>

Beagleboard-XM:

- Robot Controller <u>http://www.youtube.com/watch?v=FZKtQLj8NLE</u>
- Motor controller <u>http://www.youtube.com/watch?v=bahmjwWKWIo</u>
- Domotic Control System <u>http://www.youtube.com/watch?v=eIAWYCFv0Rw</u>

Pandaboard ES:

Robot <u>http://www.youtube.com/watch?v=ZWbZBBs9WSs</u>

Small-scale Sys Surveillance OMAP SOC

	BeagleBone	Overo® FE COM (Gumstix)	Gumstix (DuoVero) Zephyr COM
Manuf.	BeagleBoard.org	Gumstix Inc	Gumstix Inc
CPU	AM335x, 720MHz ARM Cortex-A8	OMAP 3530, 600 MHz ARM Cortex-A8	OMAP4430, Dual-Core : 1 GHz, Cotex-A9
GPU	NEON (SIMD) 2D/3D graphics	OpenGL POWERVR SGX for 2D and 3D graphics acceleration	PowerVR SGX540 ™
Memory	256 MiB DDR2 4GB microSD, Cloud9 IDE on Node.JS	512 MB RAM 512 MB NAND microSD slot	RAM : 1GB microSD slot
Feature s	USB client and Host, Ethernet , 2x 46 pin headers, Power consumption 2w	Bluetooth and 802.11b/g, Performance up to 1,400 Dhrystone MIPS, Powered via expansion board (Overo series or custom) connected to dual 70-pin connector	Ethernet (10/100 Mbps) Wifi, Bluetooth, USB OTG Power: SmartReflex technologies
OS	Android, Linux	Linux distribution pre-installed. Android	Linux, Android
Size	76.2 ×76.2 ×16mm	58mm x 17mm x 4.2mm	58mm x 17mm x 4.2mm 33

Small-scale Sys Surveillance Military Smartphone/Platforms

	Nautiz X1	Sabre-Tooth	SCORPION H2
SOC	OMAP (TI)	MediaTek	Qualcomm
CPU	OMAP 4430, dual core, (1 GHz)	MT6515, dual-core (1 GHz)	Snapdragon S3, dual
			core (1.5GHz)
Memory	RAM : 512 MB, flash: 4 GB,	RAM : 512 MB	RAM : 1MB, Flash : 16 GB,
	MicroSD card slot	MicroSD card slot (32GB)	expandable to 32GB micro SD
Connecti	GSM, CDMA, GPS, Bluetooth,	Wi-Fi: 802.11 b/g/n, 2G: GSM,	3g/4G compatible, Wi-Fi 802.11
vity	802.11 b/g/n WiFi	Bluetooth	and Bluetooth, GPS
Connecto	E-compass and G-Sensor,	2x GSM, Micro SD Card Slot,	tactical data radios, extended
rs	Extended battery, Vehicle cradle,	Micro USB, Gravity and Linear	battery life
	5-megapixel camera, LED flash	Acceleration Sensor	
features	survive humidity, vibration, drops	Water Resistant, Shockproof,	run/charge simultaneously via
	/extreme temperatures.	Dustproof, Battery Standby: 72	USB port, batteries, or vehicle
	waterproof and impervious to	Hours, dimensions:	power. vibration, shock, drop,
	dust and sand.	136x75x18mm , weight: 144g	humidity Runs Android 4.0
	runs Android 4.0	Runs Android 2.3	34

Agenda

- Project Presentation
- Why surveillance of/with small-scale systems?
- Surveillance of Small-scale Systems
- Surveillance with Small-scale Systems
- Project Summary
- Feedback?

- Massively parallel small-scale embedded systems
- Opportunities for better performance of surveillance techniques

Massively parallel small-scale embedded systems

GPUs : Expanding field for massively parallel computing

- A Graphics Processing Unit: A co-processor that takes on graphical calculations and transformations so that the main CPU does not have to be burdened by them
- GPUs are the most used platforms for massively parallel programming systems.

Massively parallel small-scale embedded systems Evolution of Embedded GPUs

Mobile Compute driving Imaging use cases

Requires significant computing over large data sets

Massively parallel small-scale embedded systems Parallella : Super computing for everyone

- Project goal: to democratize access to parallel computing through providing an affordable open hardware platform and open source tools
- The Parallella platform is an open source, energy efficient, high performance, credit-card sized computer based on the Epiphany multicore chips developed by Adapteva.

Opportunities for better performance of surveillance

• Accelerating/optimizing surveillance Using Multithreaded Algorithms

Cheng-Hung Lin; Sheng-Yu Tsai; Chen-Hsiung Liu; Shih-Chieh Chang; Shyu, J.-M., "*Accelerating String Matching Using Multi-Threaded Algorithm on GPU*," Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE , vol., no., pp.1,5, 6-10 Dec. 2010

Opportunities for better performance of surveillance

Parallel processing of input stream with Boundary detection problem!

Parallel processing of input stream with *Overlapped segments*

Accelerating String Matching Using Multi-Threaded Algorithm on GPU GLOBECOM 2010

Opportunities for better performance of surveillance

AC automaton without failure transitions

Accelerating String Matching Using Multi-Threaded Algorithm on GPU GLOBECOM 2010

Opportunities for better performance of surveillance

Promising improvements !!!

	CPU_AC	Direct_AC	PFAC	
Input streams	Throughput (KBps)	Throughput (KBps)	Throughput (KBps)	
Normal Case	997	6,428	3,963,966	
Virus Case	657	4,691	3,656,217	
Ratio	1	~6.4	~4000	

TABLE 1: THROUGHPUT COMPARISON OF THREE APPROACHES

TABLE 2: MEMORY COMPARISON

	Conventional AC			PFAC			
	states	transitions	memory (KB)	states	transitions	memory (KB)	Reduction
Snort rule*	8,285	16,568	143	8,285	8,284	114	21%
Ratio	1	1	1	1	0.5	0.79	

* The Snort rules contain 994 patterns and total 22,776 characters.

Accelerating String Matching Using Multi-Threaded Algorithm on GPU GLOBECOM 2010

Opportunities for better performance of surveillance

	Work	Mechanism
Malware detection	GrAVity: A Massively Parallel Antivirus Engine	Applying a signature filter on GPU
	A Taxonomy and Comparative Evaluation of Algorithms for Parallel Anomaly Detection	Combining different classes of anomaly detection algorithms and address the question of which combination of existing anomaly detection algorithms achieves the best detection accuracy.
	An Efficient Parallel Anomaly Detection Algorithm Based on Hierarchical Clustering	Parallel processing of training and predicting phase Both phases have the same excellent detection performance with serial processing, and it also has better real time performance than serial processing
Pattern Matching	Accelerating String Matching Using Multi-threaded Algorithm on GPU	Proposing a novel algorithm that reduces the complexity of Aho-Corasick Algorithm The new algorithm on GPUs achieves up to 4,000 times speedup compared to the AC algorithm on CPU
	A gpu-based multiple-pattern matching algorithm for network intrusion detection systems	A GPU-based pattern matching algorithm for NIDS has been proposed in this work. The proposed pattern matching algorithm is based on the concept of WM algorithm. The performance of the proposed approach is around twice of that of the MWM algorithm employed in Snort and can be applied on host-based antivirus systems.
	Bit-Parallel Multiple Pattern Matching	Extension of the bit-parallel Wu-Manber algorithm to combine several searches for a pattern into a collection of fixed-length words. Presenting an OpenCL parallelization of a redundant index on massively parallel multicore processors, within a framework of searching for similarities with seed-based heuristics. Some speedups obtained with gpu are more than 60× on cpu.

Agenda

- Project Presentation
- Why surveillance of/with small-scale systems?
- Surveillance of Small-scale Systems
- Surveillance with Small-scale Systems
- Project Summary
- Feedback?

Ongoing Activities

- Signature based detection:
 - Experimenting existing tools :
 - Antimalware for Smartphone
 - Antimalware for embedded systems
 - Optimized pattern matching algorithms
- Anomaly-based detection:
 - Features selection
 - Lightweight and optimized algorithms
 - Adaptive algorithms
 - Experimenting and adapting algorithms developed by collaborators: Concordia University

