

Online surveillance of critical computer systems

through advanced host-based detection

Harmonized Anomaly Detection

Techniques Thread

 Wahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab

Host-Based Anomaly Detection Working Group

Concordia University

Montreal, QC, Canada

Feb. 06, 2013

DRDC, Valcartier, QC

Goal

• Improve significantly the online surveillance of hosts

• Make use of a new paradigm: health-based detection of

anomalies deep on the host

• Ensure good detection accuracy

• Lower the production of false positive rates

• Develop a flexible, integrated, and configurable tool

• Make recommendations for future research

2

Where we fit in the project

3

Detection layers

Scope

4

Thread Organization

• Three sub-threads

– H1: Infrastructure and Integration (Shariyar Murtaza)

– H2: Continuous monitoring (Shayan Eskandri,

 Amirreza Soudi, Amirhossein Zali)

– H3: Trace-based models (Shariyar Murtaza,

 Afroza Sultana, another PhD?)

5

H1 – Infrastructure and Integration

H1.* Milestone Deadline

H1.1 Review existing work on anomaly detection techniques

(include existing HIDS tools). Assess the applicability of existing

techniques. Perform feasibility studies. Uncover technological and

research gaps.

2012-04-01

2012-08-29

H1.2 Develop the multi-level analysis infrastructure, its scope, its structure, and

rules of operation. Define the needed information for the infrastructure,

the requirements and how to interoperate with the existing HIDS and the

modules in Tracks 1, 2 and 4.

2012-09-01

2012-12-01

H1.3 Study the online activation and deactivation of probes and the knowledge

required from Track 4 to guide it. Develop algorithms for the feedback-

directed capability. Conduct experiments. Fine-tune and optimize.

Disseminate results and findings.

2012-12-01

2013-09-01

H1.4 Develop algorithms for integrating the anomaly detection

techniques. Conduct large-scale experiments. Examine the use of events

generated by other HIDS. Evaluate effectiveness as compared to existing

HIDS and AV. Disseminate results and findings.

2013-09-01

2014-04-01

6

H2 – Continuous Monitoring

H2.* Milestone Deadline

H2.1 Study the state of the art. Understand types of

attacks. Survey and evaluate the different possible solutions

2012-04-29

2013-04-01

H2.2 Design and prototype new algorithms and mechanisms for detecting

anomalies by correlating process execution and memory usage,

uncovering authorized use of memory and hidden processes and other

types of hidden malicious objects.

2013-04-01

2013-10-01

H2.3 Test under different conditions the proposed algorithms 2013-10-01

2014-01-01

H2.4 Disseminate results and findings. 2014-01-01

2014-03-01

H2.5 Improving the process-memory anomaly detection algorithm by

examining the file system and network activities, correlate this

information with process execution and memory usage

2014-03-01

2014-09-01

H2.6 Experimentation, validation, and optimization . 2014-09-01

2014-12-01

H2.7 Technology transfer and results dissemination. 2014-12-01

2015-04-01

7

H3 – Trace-Based Models

H3.* Milestone Deadline

H3.1 Review of trace-based host-based anomaly detection. 2012-04-01

2013-04-01

H3.2 Develop trace-based behavioural models of the OS. The model also

considers system state, in-system peek information, and other

information from existing HIDS.

2013-04-01

2013-10-01

H3.3 Evaluate the effectiveness of the new models on real-world systems .

This task will require the monitors that will be developed in Tracks 1

and 2. Refine and fine tune.

2013-10-01

2014-01-01

H3.4 Disseminate results and findings. 2014-01-01

2014-03-01

H3.5 Develop file system based learning models. Use the new models with

the process-based model to improve the detection capability.

2014-03-01

2014-09-01

H3.6 Conduct controlled experiments with real-world systems. Assess the

effectiveness, accuracy, false positive rate and scalability.

2014-09-01

2015-01-01

H3.7 Disseminate results and findings. 2015-01-01

2015-04-01

8

System Call Sequence Modeling

• Models an application’s normal behavior from system

calls sequences

• Detect deviations during operation of normal behaviour

• Techniques vary depending on:

• Machine learning technique

• Type of data (sys calls, arguments, both)

• Offline vs. online techniques

9

Surveyed Approaches

• Sliding Windows (Forrest 1997, Warrender 1999)

• Rule Based (Tandon 2003, Petrussenko 2010)

• Neural Networks (Ghosh 1999)

• Hidden Markov Models (HMM) (Hoang 2003, Hu 2009, Khreich

2012)

• Finite State Automata (FSA) (Wagner 2001, Sekar 2001)

• Variable length N-gram (Wespi 1999, Jiang 2002)

• Statistical Techniques (Ye 2001, Burgess 2002)

• Call Stack Techniques (Feng 2003)

• Bag of System Call Technique (Kang 2005)

• Dataflow Based Models (Bhatkar 2006, Frossi 2009)

• Unsupervised Learning Based Models (Maggi 2010)

• Taint Enhanced Models (Cavallaro 2011)

10

Limitations

• Scalability and performance problems

• High false positive rates

• Lack of flexibility

• Work at the sys. call level only

• Lack of tools

11

Rootkit Detection

• Rootkit is a malware having several functionalities:

– Stealth processing

– Covert communication from system administrators.

– Keystroke logging

– Packet sniffing

– Backdoor shell access

– Remote attacking on networks

12

Rootkit Detection and Prevention

Techniques

Host based

techniques

Virtualization based

techniques

External observer

based techniques

13

Techniques Description

Kruegel et al. [2004] Detect malicious LKMs using static analysis of LKM

binaries

Kroah-Hartman [2004] Load only RSA encrypted signed modules into

memory

Secure boot [Parno et al.,

2010;Jaeger et al.,2011].

Load a component if the hash is equal to a known-

good value

Jestin et al. [2011a] Cluster memory addresses to detect high memory

addresses related to malicious system calls

AppArmor [Bauer, 2006]

and SELinux [Smalley et

al., 2002]

Limit access to the kernel by using policies

Strider Ghostbuster [Beck

et al., 2005]

Identify hidden files and processes using normal

views

Host Based Techniques

14

 Techniques Description

[Garfinkel &

Rosenblum, 2003]

Enforce HIDS policies from VMM, such as signature scan

of memory, comparing commands, text comparison, etc.

[Petroni et al. 2007] Use cryptographic hashes of code and the graph of

function pointers to detect control flow (KOH) anomalies

[Wang et al. 2009] Make a copy of hooks (pointers) to a write protected

location, verify accesses and prevent KOH rootkits

[Seshadri et al., 2007]

and [Riley et al., 2008]

Prevent kernel code from unauthorized modification and

execution—targets KOH rootkits.

[Baliga et al. 2008] Prevent KOH rootkits by using the policies based on

process and file relationships

[Rhee et al. 2009] Use policies for key data structure (e.g., modification

through known functions) to detect DKOM rootkits

[Jiang et al. 2007] A technique to run anti-malware programs from outside of

an OS on a VM; e.g., antivirus

Virtualization Based Techniques

15

External Observer Based Techniques

• Copilot [Petroni et al., 2004], a PCI-card monitor, compares kernel

text, LKM text and function pointers to detect KOH rootkits

• Gibraltar [Baliga et al., 2011] detect KOH and DKOM rootkits by

using data structure invariants

Purpose Invariant Description

Detect hidden

process

run-list ⊂ all-tasks run_list is a process list used by

scheduler and all_task by others

Don’t let firewall

disable

nf_hooks[2][1].next.ho

ok == 0xc03295b0

To avoid redirection actual

address is identified

16

Host Based Techniques:

Tools Scanning Known Places

• Kstat—/dev/kmem vs. system.map

• Kern check—system.map vs. system call table

• Chkrootkit—logs and configs

• Rootkithunter—files, ports, processes

• Rkscan—Adore, Knark

• Knarkfinder—hidden processes

• Tripwire, Samhain and AIDE—checksum based integrity

• Sleuth Kit—File system forensics tool

 17

Limitations

• Lack of integration

• Lack of mining capabilities

• No support of continuous learning

• Polling vs. inline monitoring

• High false positive rate

• Overhead caused by multiple configurations

• Scalability and performance problems

18

Promising Frameworks

• Samhain:

• Developed in Germany

• Open source

• Client / Server architecture

• Centralized management

• Uses polling agents

19

Samhain capabilities

• Kernel integrity

• Open ports

• Process check

• Logfile monitoring/analysis

• SUID/SGID files

• Anti-tampering strategies

20

Comparison of Host Integrity Checkers

http://www.symantec.com/connect/articles/host-integrity-monitoring-best-practices-deployment 21

Volatility framework

• Open collection of tools

• Works on Windows, Linux, and Mac

• Processing memory dumps

• Extensible API - plugin architecture

• Comprehensive coverage of file formats

• Fast and efficient algorithms

• Support large number of memory dumping tools

• Large community support

• Forensics/IR/malware focus

22

Volatility Framework Services

• Image information (date, time, CPU count)

• Running processes

• Process SIDs and environment variables

• Open network sockets

• Open network connections

• DLLs loaded for each process

• Open handles to all kernel/executive objects (files, keys, mutexes)

• OS kernel modules

• System call tables

• API hooks in user and kernel-mode

• Explore cached registry hives

23

Volatility Plugins for Malware Detection

• IDT - Prints the Interrupt Descriptor Table (IDT) addresses for one processor

• DriverIRP - Prints driver IRP (I/O request packet) function addresses

• kernel_hooks - Detects IAT (Import Address Table), EAT (Export Address Table) ,

and in-line hooks in kernel drivers instead of usermode modules

• malfind2 - Automates the process of finding and extracting (usually malicious) code

injected into another process

• orphan_threads - Detects hidden system/kernel threads

• usermode_hooks2 - Detect IAT/EAT/Inline rootkit hooks in usermode processes

24

http://mhl-malware-scripts.googlecode.com/files/idt.py
http://mhl-malware-scripts.googlecode.com/files/driverirp.py
http://mhl-malware-scripts.googlecode.com/files/kernel_hooks.py
http://mhl-malware-scripts.googlecode.com/files/malfind2.py
http://mhl-malware-scripts.googlecode.com/files/orphan_threads.py
http://mhl-malware-scripts.googlecode.com/files/usermode_hooks2.py

Future Directions

• In collaboration with the other groups, we

intend to:

– Continue to work on integrating the tools

– Investigate the use of machine learning techniques

– Investigate the use of kernel tracing techniques

– Develop techniques based on control flow integrity and

integrate them with other tools

– Study the scalability and performance problems

25

