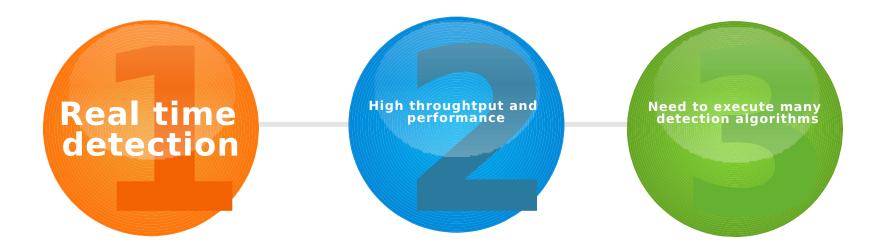
Manel Abdellatif

Parallel programming for accelerating Malware detection

Introduction : Parallelism & security

Motivations

- Ever-growing number of threats
- The market boost of embedded systems
- The increasing variety of operating systems
- Malware detection is a highly common and computationally-intensive problem in intrusion detection systems



what about small-scale

- **Systems?** Great use of small-scale systems : mobile phones, gaming consoles, SoC etc.
 - Memory and computation performance constraints
 - Ever growth of attacks on small-scale systems
 - Improvement in prallel computation performance

 How to get benefit from parallel architectures to monitor small-scale systems?

Previous Work

- Development of parallel architecture for malware detection based on pattern matching technique
- Achieving better computing performance
- Use of Cuda and desktop GPU

Current Work

- Migration to mobile platform
- Use of OpenCL
- Building of behavioral malware dataset based on syscalls patterns
- Development of memory optimization techniques

Benefits of mobile GPGPU

- ✓ To ensure high security level of mobile devices, accelerating malware detection can be provided by GPU parallel processing
- ✓ Offering a complementary processing unit to the CPU
- ✓ Adapted to SIMD architecture
- ✓ Fast memory types access (shared memory , constant memory)
- ✓ More and more evolving

✓ GPUs driven by high_and applications, prepared to

Parallel Processing architecture

Evolution of GPUs for embedded systems

Popular mobile GPUs

Adreno 330

Power VR SGX544mp3

Mali T604

-Inbuilt in Snapdragon™
800 Series Processors.
-speed can push to 3.6 gig pixels/s
-Used in HTC one, Xperia z ultra

-Inbuild in Exynos 5 Octa processor -used in galaxy s4 @ 533 MHz clock speed

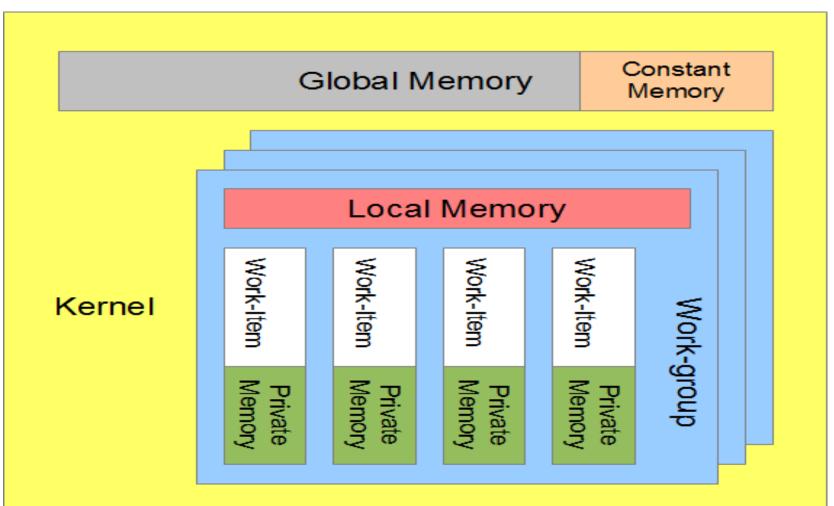
Inter-Core Task Management				
Shader Core	Shader Core	Shader Core	Shader Core	
	Memory Man	agement Unit		
	Level 2 C	ache/SCU		

-First time used in Exynos 5

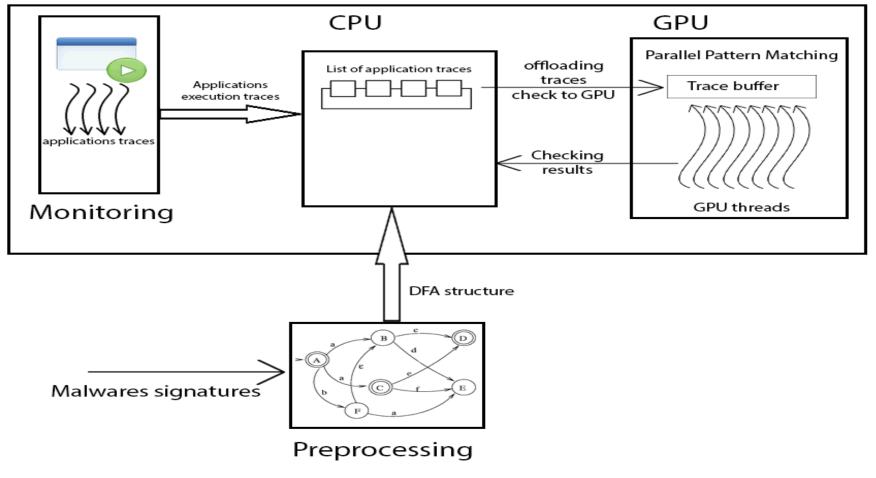
-The 1st Midgard architecture gpu for arm -Used in famous series of Google tablet nexus 10.

Parallel Processing architecture

GPU architecture

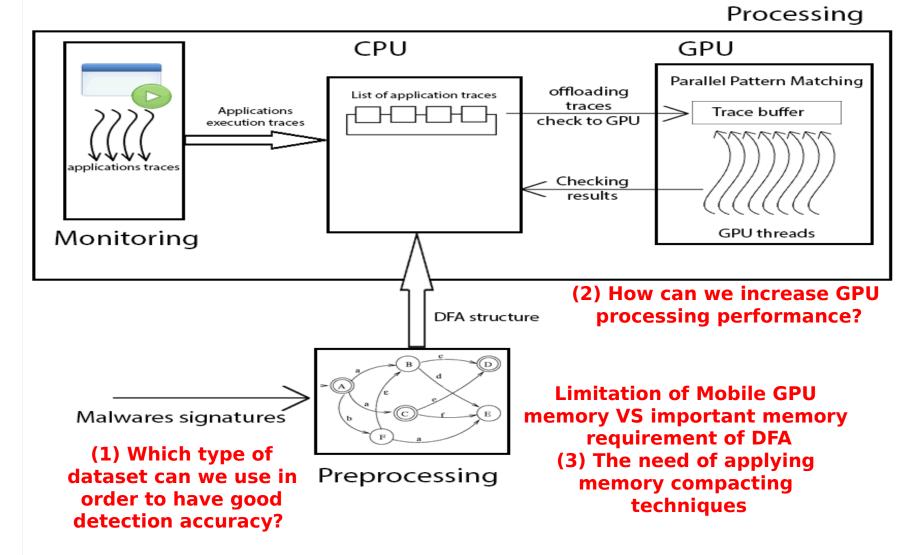


Architecture



9

Architecture Challenges



Challenge 1

Which type of dataset can we use in order to have good detection accuracy?

Malware detection

Extraction of malicious behavior based on syscalls sequences with the thread-grained extraction technique

- Key concept: Malwares which have the same malicious code embedded on benign applications, will have common malicious behaviour
- Tracking the tree architecture of applications threads
- Malicious behaviour is likely to appear at the same thread level on applications having the same malware

Application 1

Application 2

Thread tree architecture of tow applications below To the same malware family 13

Malware detection

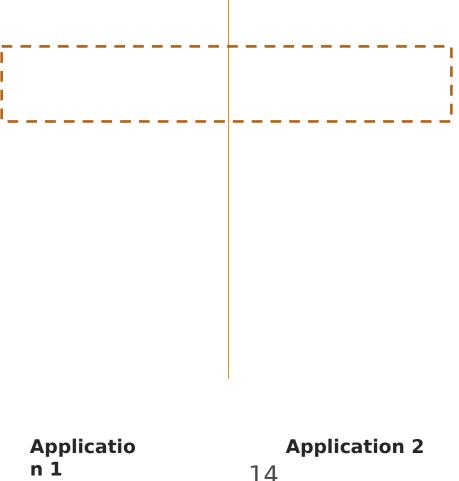
Training phase

*Recording Phase

- Having different applications that belongs to the same malware family
- Execution of every application
- Tracking thread tree structure of the application
- Recording syscalls sequences for every thread created by the application

Extraction phase

- Extraction of common syscalls subsequences belonging to threads from the same family and having the same level
- Storage of common subsequences



Malware detection

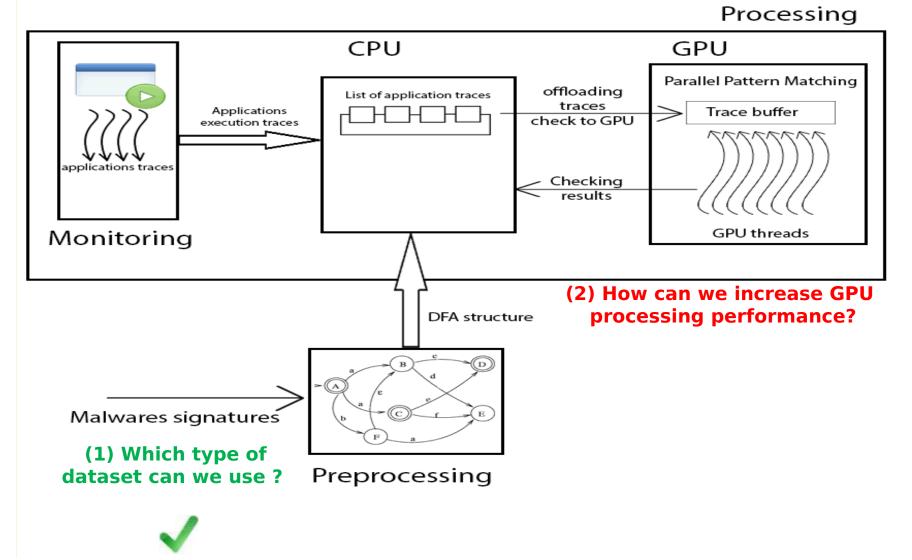
Training phase

***Filtering Phase**

- Get syscall patterns from benign applications B
- For every Csi in our malware dataset M
 - Counting the number of common subsequence Csi appearing in B and in M
 - Calculate malicious probability of Csi
 - Storing Csi into Malware common subsequences if Csi haw high malicious probability
- We choose to work with Csi having malicious probability = 1 (Csi appearing in M and not in B)

The result of traning phase= Malware behavioural dataset build of syscalls patterns

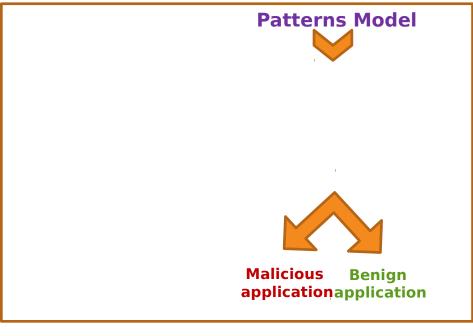
Architecture



Challenge 2

How can we increase the parallell processing performance of pattern matching on the GPU?

- Match of data streams by malware scanner against a large set of known signatures, using a pattern matching algorithm.
- Pattern matching algorithms analyze the data stream and compare it against a database of signatures to detect known malware.
- Fairly complex signature patterns composed of different-size strings, range constraints, and sometimes recursive forms.



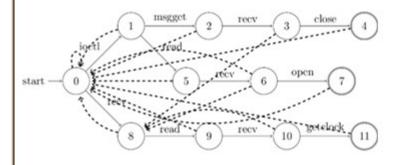
Example

- Aho-corasick
- Wu-manber
- Knuth-Morris-Pratt

Aho-Corasic

- AC algorithm is based on a DFA structure built from reference patterns.
- The construction of automaton is done in pre-processing phase.
- The matching process is done in processing phase.
- The automaton structure can be essentially described by tow tables: transition table and
 - falling at the table

ioctl	msgget	recv	close
ioctl	read	recv	open
recv	read	recv	getclock



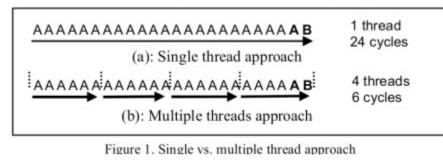
state	Final state	
0	0	
1	0	
2	0	
3	0	
4	1	
5	0	
6	0	
7	1	
8	0	
9	0	
10	0	
11	1	

	ioctl	m-gget.	195.2	close	read	open	getclos
0	1	fail	8	fail	foil	fail	fail
1	fuil	2	fail	fail	5	fail	fail
2	fail	fail	- 3	fail	fail	fail	fail
3	fail	fail	fail	4	fail	fail	fail
4	fail	fail	fail	fail	fail	fuil	fail
5	fail	fail	6	feil	fall	fail	fail
6	fail	fail	fall	fail	fall	7	fail
7	fail	fail	fail	fail	fail	fail	fail
8	fuil	fail	fail	fail	9	fail	fail
9	fail	fail	10	fail	fail	fail	fail
10	fail	fail	fail	fail	fail	Enil	11

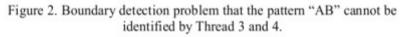
state	Failure state
0	0
1	0
2	0
3	8
4	0
5	0
6	8
7	0
8	0
9	0
10	8
11	0

Direct implementation of parallel pattern matching

- Idea
- Input stream segmentation
- For every segment we associate a thread
- Problem of boundary detection







- Possible solution
- Every thread check the pattern presence on the edges.
- Each thread must scan for a minimum length which is s almost equal to the segment length plus the longest pattern length of an AC state machine

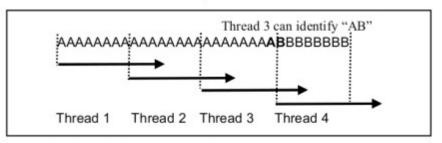


Figure 3. Every thread scans across the boundary to resolve the boundary detection problem.

Aho-Corasick

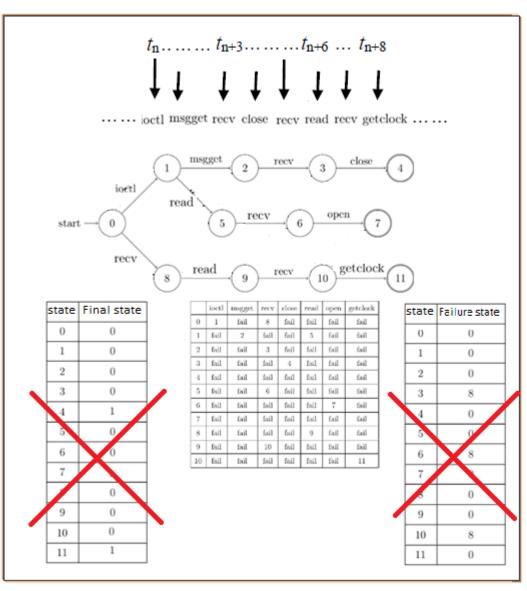
Lin, C. H., Liu, C. H., Chien, L. S., & Chang, S. C. (2013). Accelerating pattern matching using a novel parallel algorithm on gpus. Computers, IEEE Transactions on, 62(1 1906-1916.

• Gaols

- Increase pattern matching computation throughput via parallelization.
- resolve the throughput bottleneck caused by the overlapped computation.

• Idea

- Byte allocation per thread
- Failure transitions elimination
- The thread stops his work if no valid transition is found.



Parallel Failureless Aho-Corasick

Parallel Failureless Aho-Corasick

Increase of the algorithm performance on GPU

Challenge 3

- Malwares grows continuously
- The number of signatures is increasing proportionally
- Scaling problems for mobile anti-malwares due to:
- Limitation of Mobile GPU memory VS
 Important memory requirement for DFA
 Structure
 memory compacting
 techniques

24

Memory optimization technique

Memory optimization technique

P3FSM: Portable Predictive Pattern Matching Finite State Machine

(a) DFA for Patterns "SHE", "HERS", "HIS"	CI

Code Table				
Index	Code	State		
1	100101	1		
(2)	101001	5		
3	001000	2		
4	001000	7		
••••		•••		

Character/Cluster Table					
Char	Signature	Cluster	Offset	Index	
Н	0 0		\diamond	1	
S	0 1	1	2	3	
			· · · ·		

- 1. Check cluster for state code 7 for character signature of H 00 = 002. Compute next state: state signature + character offset
 10 + ① = 2 -> next state index = 21, next state = state 5

*Hardware

Mobile Phone

HTC one

GPU

• Adreno 320

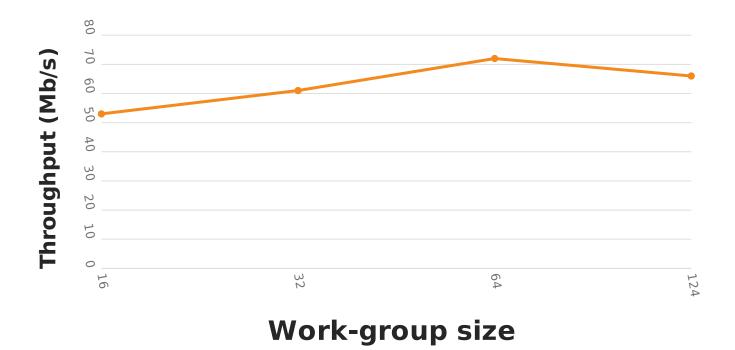
 Qualcomm Snapdragon 600, quad-core CPU @ 1.7GHz

*Benchmark

600 Malicious syscalls patterns

resizing

Local work-group resizing

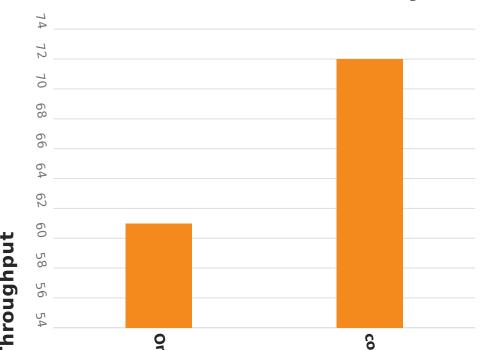


✓ Best throughput with 64x64 threads = 72Mb/s

Effective use of the different GPU memory types

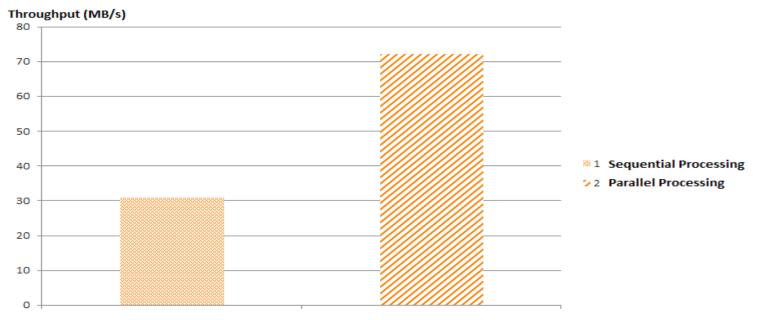
)ifferent mobile GPU memory use

- ✓ Around 15% gain of performance with the use of constant and shared memories
- Applying shared memory to improve the latency of global memory accesses



Acceleration

Acceleration



- ✓ An acceleration of around 2.3x is obtained with the parallel processing on the mobile GPU over serial processing
- The framework throughput is dominated by data transfers between the host /device which consist of 60% of the total processing time

requirement Number of **PFAC (KB)** P3FSM patterns (KB) 100 446 37 200 703 83 1086 197 300 600 2843 462

- Storing DFA structure on the GPU is memory consuming especially that mobile GPU memory is small.
- ✓ Difference in memory requirement between PFAC DFA and P3FSM.
- ✓ P3FSM that compacts the DFA structure by many times comparing to standard PFAC DFA.

Conclusion

- Implementation of a parallel host-based anti-malware on mobile GPU using behavioral detection techniques
- Series of optimizations to deal with the low memory problem of mobile devices and the ever-increasing computing and memory requirements of malware detection

Perspectives:

- Integrating a GPU monitor which tracks down the GPU memory usage and allows the automaton adjustment in real-time to fit the reduced GPU memory
- Use of mobile GPU clusters
- Working on malware dataset to achieve better detection accuracy

Thank you for your attention