

Highly Parallel Architectures

to accelerate Malware

detection

1

Ghassen Zegden
Manel Abdellatif

introducing

Motivations

o How to get benefit from parallel architectures on small-scale systems
to accelerate malware detection?

• Great use of small-scale systems : mobile phones, gaming consoles, SoC etc.
• Memory and computation performance constraints
• Ever growth of attacks on small-scale systems
• Malware detection is a highly common and computationally-intensive problem
• Improvement in parallel computation performance

Security threats Parallel performance
computation

VS

Introduction : Parallelism & security

Focus
• In general, we make benefit from parallelism to reinforce the security level of the

system by :

Optimizing malware

detection
algorithms

Use of Clusters

architecture

Achieve better computing performance
&

detection accuracy
3

Introduction : Parallelism & security

Introduction : Parallelism & security

Work Part 1
• Development of parallel architecture for malware detection based on pattern

matching technique
• Achieving better computing performance
• Use of Cuda and desktop GPU

Work Part 2
• Migration to mobile GPU platform
• Use of OpenCL
• Building of behavioral malware dataset based on syscalls patterns
• Development of memory optimization techniques
• Experimenting different scenarios to scan trace files

Work Part 3
• Migration to Parallella board in order to experiment clusters architecture
• Use of epiphany coprocessor
• Use of CO-PRocessing THReads (COPRTHR) SDK

Evolution of GPUs for embedded
systems

Parallel Processing architecture

5

Parallel Processing architecture

Parallella: Enviromnent for parallel processing

6

Parallella Board

• 100$ credit-card sized computer based on the Epiphany multicore chips
developed by Adapteva

• Energy efficient
• High performance processing

Epiphany architecture

7

Parallella Board

The key benefits of the Epiphany
architecture are:

• Ease of Use: A multicore architecture

that is ANSI-C/C++ programmable :
accessible to every programmer

• Effectiveness

• Scalability: The architecture can scale to

thousands of cores on a single chip and
millions of cores within a larger system

But very small local memory per Ecore
(Only 32 KB for data + code)

 Framework Architecture for mobile GPU

8

Architecture Challenges

9

memory limitations in small scale
embedded systems VS important memory

requirement of DFA
(2) The need of applying memory

compacting techniques

(1) How can we increase the parallel processing
performance?

Challenge 1

10

How can we
increase the

parallell processing
performance of

pattern matching
algorithm?

Parallel Pattern Matching Algorithm

Example
• Aho-corasick
• Wu-manber
• Knuth-Morris-Pratt

Input data

• Signatures

• Syscalls

• Bytecode …

Pattern
matching

Patterns Model

Malicious
application

Benin
application

11

Parallel Pattern Matching Algorithm

Aho-Corasick

Parallel Pattern Matching Algorithm

• AC algorithm is based on a DFA

structure built from reference

patterns.

• The construction of automaton is done

in pre-processing phase.

• The matching process is done in

processing phase.

• The automaton structure can be

essentially described by tow tables:

transition table and failure state table.

12

Parallel Pattern Matching Algorithm Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm

• Gaols

 Increase pattern matching computation
throughput via parallelization

• Idea

 Byte allocation per thread

 Failure transitions elimination

 The thread stops his work if no valid
transition is found.

13

Parallel Pattern Matching Algorithm Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm

 Increase of the algorithm performance on GPU

• Reducing the global memory transactions of the system

• Making benefit from memory architecture of GPU by using constant

memory and local memory

• Minimize transfers: Intermediate data can be allocated, operated
on, and deallocated without ever copying them to host memory

• Adopting an adequate scan scenario of the input stream

14

Parallel Pattern Matching Algorithm Parallel Pattern Matching Algorithm

Challenge 2

15

• Malwares grows continuously

• The number of signatures is increasing proportionally

 Scaling problems for mobile anti-malwares due to:

• Memory Limitation of small scale embedded systems
VS Important memory requirement for DFA structure

The need of applying memory
compacting techniques

Memory optimization technique

16

Eliminating failure transition

Eliminating Final states table by
performing state reordering

Applying P3FSM technique

1

2

3

Parallel Pattern Matching Algorithm

18

Hardware

Mobile Phone
• Sony Xperia Z

GPU
• Adreno 320

CPU
• Qualcomm Snapdragon 600, quad-core CPU @ 1.7GHz

Parallel Pattern Matching Algorithm Experimentations

Memory requirement

19

Experimentations

 Storing DFA structure on the GPU is memory consuming especially that mobile GPU
memory is small.

 Difference in memory requirement between PFAC DFA and P3FSM.
 P3FSM that compacts the DFA structure by 10 times comparing to standard PFAC DFA.

Number of patterns PFAC (KB) P3FSM (KB)

2000 67677 8922

2200 74398 9234

10000 678937 50765

16000 806554 60432

17600 809321 74380

Thread per block resizing

20

Experimentations

 Best throughput with 16 threads/block = 333Mb/s

Effective use of the different GPU
memory types

Experimentations

Memory
configuration

Global memory Constant
memory

Local
memory

Conf1 transition_table
input_buffer
result_buffer

Conf2 transition_table
result_buffer

 input_buffer

Conf3 transition_table
result_buffer

input_buffer

Conf4 Transition table Part 2
result_buffer

transition_tableP1

input_buffer

Conf5 transition_tableP2
input_buffer
result_buffer

transition_tableP1

Conf6 Transition table Part 2
result_buffer

input_buffer

Transition
Table Part1

Serial processing throughput vs parallel
processing

Traces’ files Scanning Scenarios

22

Experimentations

Load distribution and throughput of PFAC algorithm

23

Framework on Parallella Board

 Max global workgroup size = 16 threads
 Max local workgroup size = 3 threads / ecore
 In general, the more parallel threads we have the better the throughput is.
 The best throughput is = 3.1 Gb/s with 8 ecores on which we execute 2 threads
 The more the ecores are fully exploited the better the throughput is.
 50% of computation overhead due to data loading and platform initializing delays.
 Acceleration = 5x

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

(4,1) (4,2) (6,1) (6,2) (6,3) (8,1) (8,2) (9,1) (9,3) (12,1) (12,2) (12,3) (15,1) (15,3) (16,1) (16,2)

Global and local workgroup resizing

Throughput (Gb/s)

24

• Beowulf Cluster

• consumer grade computers (not
expensive)

• MPI as a communication protocol
• One Master, several slaves
• Decrease the amount of time

required for processor-intensive
tasks

Cluster of parallella boards

Clusters

25

• Message Passing System

• In order to send/receive messages, some information has to be provided

 Sending process
 Source location
 Data type
 Data size
 Receiving process

memory memory

data data

Node A Node B

Send(data) Receive(data)

network

Message Passing

 SPMD
Single Program
Multiple Data

 MPMD
Multiple Program

Multiple Data

Messages

26

MPI – Message Passing Interface

• language-independent communications protocol used to program parallel
computers –-> can be associated with Fortran,C,C++ and Java

• point-to-point and collective communication

• A fixed set of processes is created at program initialization

• Each process is identified by its rank

• Derived Data types can be defined to send different data types

• Open MPI as an implementation

Messages

27

• Hardware

• 4 parallella boards (total of 64 ecores)
• Router

• Software

• Ubuntu 14.04
• Open Mpi v1.8.4

Experimentations

28

Experimentations

Scenario

• The input file (traces) is stored in the master node
• The master splits the file equally following the number of slaves and sends each part

to a slave
• Slaves execute the algorithm on the portion of dataset they received
• Each slave sends back its results to the master

Size = k

Size = k/n

Size = k/n

Size = k/n
Dataset splitting

29

Experimentations

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

1 2 3 4

Cluster nodes resizing throughput

Throughput (Gb/s)

number of nodes
in the cluster

30

 Implementation of a parallel anti-malware framework on mobile GPU and
parallella boards using behavioral detection techniques

 Series of optimizations to deal with the low memory problem of small scale
embedded systems and the ever-increasing computing and memory
requirements of malware detection

 Implementation of a Parallella beowulf cluster to further enhance
parallelization of the anti-malware framework

 Perspectives:

 Integrating a GPU monitor which tracks down the GPU memory usage and
allows the automaton adjustment in real-time to fit the reduced GPU
memory

 Integrating a monitor for the cluster architecture

 Expanding the cluster to a hetergenous one

Conclusion

31

Thank you for
your attention

