0 J LW Ghassen Zegden
O B Manel Abdellatif

Highly Parallel Architectures
to accelerate Malware
detection

“w,f//f/ffr 7777

L ELE L

rrrrrr

Introduction : Parallelism & security

Motivations

e Great use of small-scale systems : mobile phones, gaming consoles, SoC etc.
 Memory and computation performance constraints

e Ever growth of attacks on small-scale systems

* Malware detection is a highly common and computationally-intensive problem
* Improvement in parallel computation performance

. »

- " = —

> (I ("

Security threats Parallel performance
computation

o How to get benefit from parallel architectures on small-scale systems
to accelerate malware detection?

Introduction : Parallelism & security

Focus

* In general, we make benefit from parallelism to reinforce the security level of the
system by :

& e

Optimizing malware
ptimizing ma Use of Clusters

algorithms architecture

Achieve better computing performance
&
detection accuracy

Introduction : Parallelism & security

Work Part 1

* Development of parallel architecture for malware detection based on pattern
matching technique

e Achieving better computing performance

e Use of Cuda and desktop GPU

Work Part 2

* Migration to mobile GPU platform

e Use of OpenCL

* Building of behavioral malware dataset based on syscalls patterns
* Development of memory optimization techniques

* Experimenting different scenarios to scan trace files

Work Part 3

* Migration to Parallella board in order to experiment clusters architecture
* Use of epiphany coprocessor

e Use of CO-PRocessing THReads (COPRTHR) SDK

Parallel Processing architecture
Evolution of GPUs for embedded

svstems

450
40% more GFLOPS/quarter
m |
Estimated at
350 - — /[sustained peak '.
\ | performance. |
L . J
| |\ Likely to be much /
0 ' less in practice. 1
250 -
¢ GFLOPS
200 | =P Trend
150 - Adreno 330
Adreno 320 .
100 Mali T604 Mali T628
50 T PowerVR 5XT

0 ! .

Sep-2011 Dec-2011 Apr-2012 Jul-2012 Oct-2012 Jan-2013 May-2013 Aug-2013 Nov-2013 Mar-2014 Jun-2016 ADUn(] ‘
© 2013 Aptina Imaging Corporation mAGIN

Parallella Board

Parallella: Enviromnent for parallel processing

Power Source
16 Core Epiphany Zyng Dual Core ARM A9 jumper

Coprocessor Processor (with FPGA logic) 1GB SDRAM (short pin 1 & 2)

= mmime

[T

<« 5VDC

<— uUSB
(power only)

Gigabit
Ethernet

Power LLD Operation LLD Serial Connector

* Not on P1600-xxx models

* 100S credit-card sized computer based on the Epiphany multicore chips
developed by Adapteva

* Energy efficient

e High performance processing

Parallella Board

Epiphany architecture

The key benefits of the Epiphany
architecture are:

* Ease of Use: A multicore architecture
that is ANSI-C/C++ programmable :
accessible to every programmer

:::
FEVEENE |

AL "Tﬁtﬁ %’!‘ﬁ RISC CPU Eﬁ;:‘E

Local Netwirk
Memary Interface

e Effectiveness]

'I'
Bhes
: +

4'"4"'5"4""5'.

* Scalability: The architecture can scale to
thousands of cores on a single chip and
millions of cores within a larger system

'!'
-
In
?‘I

But very small local memory per Ecore
(Only 32 KB for data + code)

Framework Architecture for mobile GPU

Processing

o

applications traces

Parallel device

Parallel Pattern Matching

Trace buffer

List of application traces of:ﬂoading
- - traces
Applications
execution traces ﬁ H H H l—‘
Checking
results

Monitoring

A

Q0

threads

| ‘ DFA structure

Malwares signatures

. T~
W /)" da

Preprocessing

Architecture Challenges

Processing
CPU Parallel device
lomss s s sassani
| . Parallel Pattern Matching
List of application traces of:ﬂoadlng
traces

Trace buffer

5 C C f armterens., | [HH_H h
————
applications traces 22222222
Checking
results

Monitoring /\ threads
(1) How can we increase the parallel processing
DFA structure performance?
_u-l'fn\" ‘@:})
~ 3@;) E N memory limitations in small scale
e I Y ~, | embedded systems VS important memor
Malwares signatures ufkﬁ#"-—-’—_) v . P Y
o 7 requirement of DFA
— (2) The need of applying memory
Preprocessing compacting techniques

Challenge 1

How can we
increase the
parallell processing
performance of
pattern matching
algorithm?

10

Parallel Pattern Matching Algorithm

Patterns Model

N

@ Pattern
matching

‘e

Malicious Benin
application gpplication

o ®,
O
0@ °.
. Input data
@
N
® o0
e Signatures

e Syscalls
e Bytecode ...

Example

e Aho-corasick

 Wu-manber

* Knuth-Morris-Pratt 1

Parallel Pattern Matching Algorithm

[J
A h o-co ra S I c k ioct] . msgeet . ey close |
ioct]l | read | recvy | open |
ey rieail recy | getelock |
e ACalgorithm is based on a DFA e) e ()
A - 2 L3 1
structure built from reference it g
amem ST aﬁ: p— @
start -4 5 - ¥ .
patterns. ;_- -
. . “-.I 5 " lulf) nwt::.)) _?*‘FEJE,@
e The construction of automaton is done — : -
in prE'prOCESSing phase. state | Final state ot [[reee | ceme state Fzilura state
i} i 'II I:I I.I,II T - T — — L .I: i i
e The matching process is done in | 0 Sl . | 0
2 v Lol |t i i 2 L
processing phase. - R T
[711} Fail il I 0
5 0 Gl | Gl 5 0
e The automaton structure can be P 0 3 T S . :
I Eail Eail il]
T 1 7 0
essentially described by tow tables: - 0 : !
1 i 1 L
transition table and failure state table. 10 0 10 3
11 l 11 0

12

Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

e Gaols i I S iy
» Increase pattern matching computation l l l l l ¢ l l
throughput via parallelization
goet reev close peev read reev getelock

istate | Final state | =tate Fzilur= state
(BT

° Idea i} i & il i
1 0 ail 1 0
» Byte allocation per thread 2 0 . 2 0
> Failure transitions elimination ": 'l' o ’ -
. . . Eail I !

» The thread stops his work if no valid : 0 \

transition is found. 6 0 = 6

9 i 9

1] u 10
11 l 11 13"

Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

» Increase of the algorithm performance on GPU

e Reducing the global memory transactions of the system W

e Making benefit from memory architecture of GPU by using constant
memory and local memory

N
e Minimize transfers: Intermediate data can be allocated, operated
on, and deallocated without ever copying them to host memory
N
e Adopting an adequate scan scenario of the input stream

14

Challenge 2

 Malwares grows continuously
* The number of signatures is increasing proportionally
» Scaling problems for mobile anti-malwares due to:

* Memory Limitation of small scale embedded systems
VS Important memory requirement for DFA structure

The need of applying memory
compacting techniques

15

/

Memory optimization technique

1 Eliminating failure transition
\
Eliminating Final states table by
performing state reordering
|

3 Applying P3FSM technique

16

Experimentations

s*Hardware

(JMobile Phone
* Sony Xperia Z

JGPU
e Adreno 320

JdCPU
* Qualcomm Snapdragon 600, quad-core CPU @ 1.7GHz

18

Experimentations

Memory requirement

 Nemberorpatms | praca) | M ()
T e 922
T 74398 9234
10000 [EERTREEY 50765
DT 506554 60432
_ 809321 74380

v’ Storing DFA structure on the GPU is memory consuming especially that mobile GPU
memory is small.

v’ Difference in memory requirement between PFAC DFA and P3FSM.

v P3FSM that compacts the DFA structure by 10 times comparing to standard PFAC DFA.

19

Experimentations

Thread per block resizing

Local work group resizing

400

300
200

100

8 6 16 32 64

Throughput (Mbit/s)

v’ Best throughput with 16 threads/block = 333Mb/s 20

Experimentations

Effective use of the different GPU
memory types

Memory | Global memory | Constant Local
configuration memory memory

transition_table
input_buffer
result_buffer

transition_table
result_buffer

transition_table
result_buffer

Transition table Part 2
result_buffer

transition_tableP2
input_buffer
result_buffer

Transition table Part 2
result_buffer

input_buffer

transition_tableP1

transition_tableP1

input_buffer

input_buffer

input_buffer

Transition
Table Partl

parallel processing conf6
parallel processing conf5
parallel processing conf4
parallel processing conf3
parallel processing conf2
parallel processing conf1

Serial processing

Serial processing throughput vs parallel

I
I
|
I
I
I

I

0 100 200 300

400

Experimentations

Traces’ files Scanning Scenarios

Scenario 1: Input buffer allocated to
only one application trace file

c>c>c:>-
SEITTTISTISST ||

Scenario 2: Applications trace files

are cocatenated in the input buffer % o0

E>E>E> E B scenario 1
§ 3 150 B scenario 2

| E] | B | = M scenario 3

SO IONINGY e

Scenario 3: Parallel processing of the
applications traces simultaniously

S

TIT T T T TeT

n
(=1

=]

Buffer size (MB)

Framework on Parallella Board

Load distribution and throughput of PFAC algorithm

AN N NN N NN

Global and local workgroup resizing

3,50

3,00

2,50
2,00
1,50
1,00
0,50

0,00

(4,1) (4,2) (6,1) (6,2) (6,3) (8,1) (8,2) (9,1) (9,3) (12,1) (12,2) (12,3) (15,1) (153) (16,1) (16,2)

M Throughput (Gb/s)

Max global workgroup size = 16 threads

Max local workgroup size = 3 threads / ecore

In general, the more parallel threads we have the better the throughput is.

The best throughput is = 3.1 Gb/s with 8 ecores on which we execute 2 threads
The more the ecores are fully exploited the better the throughput is.

50% of computation overhead due to data loading and platform initializing delays.
Acceleration = 5x

23

Clusters

e Beowulf Cluster

e consumer grade computers (not
expensive)

* MPI as a communication protocol

* One Master, several slaves

e Decrease the amount of time
required for processor-intensive
tasks

Cluster of parallella boards

* Message Passing System

* In order to send/receive messages, some information has to be provided

» Sending process
» Source location
» Data type

» Data size

» Receiving process

Message Passing

4/\5

SPMD MPMD
Single Program Multiple Program
Multiple Data Multiple Data

Node A

memory

data —

Send(data)

network

Node B

memory

Receive(data)

MPI — Message Passing Interface

e language-independent communications protocol used to program parallel
computers —> can be associated with Fortran,C,C++ and Java

e point-to-point and collective communication

* Afixed set of processes is created at program initialization

* Each process is identified by its rank

* Derived Data types can be defined to send different data types

* Open MPI as an implementation

Experimentations

e Hardware

* 4 parallella boards (total of 64 ecores)
* Router

e Software

e Ubuntu 14.04
* Open Mpivl.8.4

27

Experimentations

Scenario

* The input file (traces) is stored in the master node

* The master splits the file equally following the number of slaves and sends each part
to a slave

e Slaves execute the algorithm on the portion of dataset they received

e Each slave sends back its results to the master

Size = k/n

Size = k Size = k/n

Size = k/n
Dataset splittine

4,50

4,00

3,50

3,00

2,50

2,00

1,50

1,00

0,50

0,00

Experimentations

Cluster nodes resizing throughput

2 3
B Throughput (Gb/s)

number of nodes
in the cluster

Y V

Conclusion

Implementation of a parallel anti-malware framework on mobile GPU and
parallella boards using behavioral detection techniques

Series of optimizations to deal with the low memory problem of small scale
embedded systems and the ever-increasing computing and memory
requirements of malware detection

Implementation of a Parallella beowulf cluster to further enhance
parallelization of the anti-malware framework

Perspectives:

Integrating a GPU monitor which tracks down the GPU memory usage and
allows the automaton adjustment in real-time to fit the reduced GPU
memory

Integrating a monitor for the cluster architecture
Expanding the cluster to a hetergenous one

30

Thank you for
your attention

