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Highly Parallel Architectures
to accelerate Malware
detection
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Introduction : Parallelism & security

Motivations

e Great use of small-scale systems : mobile phones, gaming consoles, SoC etc.
 Memory and computation performance constraints

e Ever growth of attacks on small-scale systems

* Malware detection is a highly common and computationally-intensive problem
* Improvement in parallel computation performance
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Security threats Parallel performance
computation

o How to get benefit from parallel architectures on small-scale systems
to accelerate malware detection?




Introduction : Parallelism & security

Focus

* In general, we make benefit from parallelism to reinforce the security level of the
system by :

& e

Optimizing malware
ptimizing ma Use of Clusters

algorithms architecture

Achieve better computing performance
&
detection accuracy



Introduction : Parallelism & security

Work Part 1

* Development of parallel architecture for malware detection based on pattern
matching technique

e Achieving better computing performance

e Use of Cuda and desktop GPU

Work Part 2

* Migration to mobile GPU platform

e Use of OpenCL

* Building of behavioral malware dataset based on syscalls patterns
* Development of memory optimization techniques

* Experimenting different scenarios to scan trace files

Work Part 3

* Migration to Parallella board in order to experiment clusters architecture
* Use of epiphany coprocessor

e Use of CO-PRocessing THReads (COPRTHR) SDK




Parallel Processing architecture
Evolution of GPUs for embedded

svstems
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Parallella Board

Parallella: Enviromnent for parallel processing

Power Source
16 Core Epiphany Zyng Dual Core ARM A9 jumper

Coprocessor Processor (with FPGA logic) 1GB SDRAM (short pin 1 & 2)

= mmime

[T

<« 5VDC

<— uUSB
(power only)

Gigabit
Ethernet

Power LLD Operation LLD Serial Connector

* Not on P1600-xxx models

* 100S credit-card sized computer based on the Epiphany multicore chips
developed by Adapteva

* Energy efficient

e High performance processing



Parallella Board

Epiphany architecture

The key benefits of the Epiphany
architecture are:

* Ease of Use: A multicore architecture
that is ANSI-C/C++ programmable :
accessible to every programmer
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* Scalability: The architecture can scale to
thousands of cores on a single chip and
millions of cores within a larger system
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But very small local memory per Ecore
(Only 32 KB for data + code)



Framework Architecture for mobile GPU

Processing

o

applications traces

Parallel device

Parallel Pattern Matching

Trace buffer
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Architecture Challenges

Processing
CPU Parallel device
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| . Parallel Pattern Matching
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Trace buffer

5 C C f armterens., | [HH_H h
————
applications traces 22222222
Checking
results

Monitoring /\ threads
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Challenge 1

How can we
increase the
parallell processing
performance of
pattern matching
algorithm?
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Parallel Pattern Matching Algorithm

Patterns Model

N
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matching
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e Signatures

e Syscalls
e Bytecode ...

Example

e Aho-corasick
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Parallel Pattern Matching Algorithm
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Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick
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Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

» Increase of the algorithm performance on GPU

e Reducing the global memory transactions of the system W

e Making benefit from memory architecture of GPU by using constant
memory and local memory

N
e Minimize transfers: Intermediate data can be allocated, operated
on, and deallocated without ever copying them to host memory
N
e Adopting an adequate scan scenario of the input stream
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Challenge 2

 Malwares grows continuously
* The number of signatures is increasing proportionally
» Scaling problems for mobile anti-malwares due to:

* Memory Limitation of small scale embedded systems
VS Important memory requirement for DFA structure

The need of applying memory
compacting techniques
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Memory optimization technique

1 Eliminating failure transition
\
Eliminating Final states table by
performing state reordering
|

3 Applying P3FSM technique
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Experimentations

s*Hardware

(JMobile Phone
* Sony Xperia Z

JGPU
e Adreno 320

JdCPU
* Qualcomm Snapdragon 600, quad-core CPU @ 1.7GHz
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Experimentations

Memory requirement
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v’ Storing DFA structure on the GPU is memory consuming especially that mobile GPU
memory is small.

v’ Difference in memory requirement between PFAC DFA and P3FSM.

v P3FSM that compacts the DFA structure by 10 times comparing to standard PFAC DFA.
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Experimentations

Thread per block resizing

Local work group resizing
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v’ Best throughput with 16 threads/block = 333Mb/s 20



Experimentations

Effective use of the different GPU
memory types

Memory | Global memory | Constant Local
configuration memory memory
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Experimentations

Traces’ files Scanning Scenarios

Scenario 1: Input buffer allocated to
only one application trace file
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Framework on Parallella Board

Load distribution and throughput of PFAC algorithm
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Global and local workgroup resizing
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Max global workgroup size = 16 threads

Max local workgroup size = 3 threads / ecore

In general, the more parallel threads we have the better the throughput is.

The best throughput is = 3.1 Gb/s with 8 ecores on which we execute 2 threads
The more the ecores are fully exploited the better the throughput is.

50% of computation overhead due to data loading and platform initializing delays.
Acceleration = 5x
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Clusters

e Beowulf Cluster

e consumer grade computers (not
expensive)

* MPI as a communication protocol

* One Master, several slaves

e Decrease the amount of time
required for processor-intensive
tasks

Cluster of parallella boards



* Message Passing System

* In order to send/receive messages, some information has to be provided

» Sending process
» Source location
» Data type

» Data size

» Receiving process

Message Passing

4/\5

SPMD MPMD
Single Program Multiple Program
Multiple Data Multiple Data

Node A

memory

data —

Send(data)

network

Node B

memory

Receive(data)



MPI — Message Passing Interface

e language-independent communications protocol used to program parallel
computers —> can be associated with Fortran,C,C++ and Java

e point-to-point and collective communication

* Afixed set of processes is created at program initialization

* Each process is identified by its rank

* Derived Data types can be defined to send different data types

* Open MPI as an implementation



Experimentations

e Hardware

* 4 parallella boards (total of 64 ecores)
* Router

e Software

e Ubuntu 14.04
* Open Mpivl.8.4
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Experimentations

Scenario

* The input file (traces) is stored in the master node

* The master splits the file equally following the number of slaves and sends each part
to a slave

e Slaves execute the algorithm on the portion of dataset they received

e Each slave sends back its results to the master

Size = k/n

Size = k Size = k/n

Size = k/n
Dataset splittine
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Cluster nodes resizing throughput
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Conclusion

Implementation of a parallel anti-malware framework on mobile GPU and
parallella boards using behavioral detection techniques

Series of optimizations to deal with the low memory problem of small scale
embedded systems and the ever-increasing computing and memory
requirements of malware detection

Implementation of a Parallella beowulf cluster to further enhance
parallelization of the anti-malware framework

Perspectives:

Integrating a GPU monitor which tracks down the GPU memory usage and
allows the automaton adjustment in real-time to fit the reduced GPU
memory

Integrating a monitor for the cluster architecture
Expanding the cluster to a hetergenous one
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