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Abstract-Host-based intrusion detection techniques are needed to 

ensure the safety and security of software systems, especially, if 

these systems handle sensitive data. Most host-based intrusion 

detection systems involve building some sort of reference models 

offline, usually from execution traces (in the absence of the source 

code), to characterize the system healthy behavior. The models 

can later be used as a baseline for online detection of abnormal 

behavior.  Perhaps the most popular techniques are the ones 

based on the use of Hidden Markov Models (HMM). These 

techniques, however, require long training time of the models, 

which makes them computationally infeasible, the main reason 

being the large size of typical traces. In this paper, we propose an 

improved HMM using the concept of frequent common patterns. 

In other words, we build models based on extracting the largest 

n-grams (patterns) in the traces instead of taking each trace event 

on its own. We show through a case study that our approach can 

reduce the training time by 31.96%-48.44% compared to the 

original HMM algorithms while keeping almost the same 

accuracy rate.  

Keywords- Host-based Anomanly Detection Systems; HMM; N-

gram extraction algorithm; Behavioral modeling. 

I. INTRODUCTION 

Intrusion detection refers to the ability to detect abnormal 
behavior in a system, often caused by security attacks, viruses, and 
the presence of design faults [1]. The consequences of not 
detecting these anomalies can be devastating in terms of system 
security and performance. A large body of research has been 
devoted to the analysis of network traffic, but these Network-based 
Intrusion Detection Systems (NIDS) are not always sufficient and 
can be easily evaded by “subtle” attacks that do not generate 
important network traffic, and hence go undetected by even the 
most advanced NIDS. To overcome this limitation, recently, there 
has been an important shift in this area to the techniques that 
permit the detection of intrusions at the host level, i.e., Host-based 
Intrusion Detection Systems (HIDS) [2, 3]. 

In HIDS, the intrusions are detected by monitoring and 
analyzing the system or application data that is collected from the 
host computer. Since an HIDS depends on the information about 
the host computer, it should, in principle, be able to detect an 
important range of anomalies that can cause the system to deviate 
from its normal behavior. Host-based intrusion detection 
techniques can be grouped into two categories:  misuse or outlier 
detection [4] and anomaly detection [5]. The misuse detection 
techniques require prior knowledge of the potential intrusions (for 
example, virus, attacks, threats, etc.) of the system. They look for 
known intrusion patterns in the system from the prior knowledge 

of the intrusions (through signatures) and identify them as 
intrusions. One major drawback of misuse detection techniques is 
that the intrusion must be known beforehand to be identified. 
Therefore, any new intrusion, such as a new type of viruses will be 
unidentified by the misuse detection techniques.  

The anomaly detection techniques, the second category and 
also the focus of this paper, operate by modeling the “normal” 
behavior of the host computer. The prior knowledge of normal or 
acceptable behavior of a system is modeled ensuring that the 
system is running in a safe environment without the presence of 
any intrusion. The system is then put in operation. The anomaly 
detection technique correlates the behavior of the system in 
operation with the one already built; it identifies any significant 
deviating behavior as an intrusion. The main advantage of the 
anomaly detection algorithms is that they do not require any prior 
knowledge of possible intrusions, hence, are able to identify any 
new virus attack, zero-day attacks, unknown system faults, and 
potential threats to the system.  

There exist several techniques for building reference models 
such as machine learning [6-8], Hidden Markov Models [9-11], 
statistical profiling [5, 12- 14], and data mining [15-20]. Among 
these approaches, Hidden Markov Models (HMM) [21] have been 
shown to be very promising for anomaly detection over several 
other techniques because of their high accuracy in identifying 
intrusions [9]. However, the HMM-based algorithms suffer from 
long training time during the construction of the models, which 
hinders their efficiency [9]. 

In this paper, we present an Improved Hidden Markov Model 
(I-HMM) algorithm using the concept of frequent common 
patterns found in the trace sequences [8]. In other words, we use 
the frequent common patterns to build the HMM models instead of 
the trace events. By doing this, we reduce significantly the length 
of the training sequences, which in turn result in more compact 
HMM models. To extract these patterns, we use n-grams 
extraction algorithms, a concept used in text mining [22]. We 
show the effectiveness of our approach by applying it to building a 
behavioral model for a system called Gzip [23], which is a file 
compression and decompression software for Linux. Using the 
Linux Tracing Toolkit Next Generation (LTTng) [24,25] trace 
instrumentation tool, we collect traces of routine calls by 
exercising the system’s features. We also use Weka 3.7.4 [26] for 
behavioral modeling and model verification for both HMM and I-
HMM algorithms. Our study shows that our I-HMM algorithm 
reduces the model generation time by approximately 31.96% - 
48.44% compared to the original HMM. Furthermore, the training 
time reduction gets even better in I-HMM when the trace coverage 
increases, hence, further improving the overall accuracy of the I-
HMM. 



The organization of this paper is as follows. Section II gives an 
overview of Hidden Markov Models (HMM). Our methodology 
for reducing the learning time of HMM is explained in Section III. 
Our case study is described in Section IV. The comparative results 
and analysis are presented in Section V. In Section VI, we discuss 
the conclusion and future work. 

II. HIDDEN MARKOV MODELS 

A Hidden Markov Model (HMM) is a double stochastic model 
[21]. The model is denoted by λ (A, B, π), where A is the set of 
observables, B is the set of hidden states, and π is the set of 
transition probabilities, i.e., the probabilities from going to one 
hidden state to another. This model is known as double stochastic 
since there is a hidden layer that contains some hidden states. This 
hidden layer follows the principles of Markov process. The other 
layer contains the states of the observables in a particular time t of 
the model construction. This is also a Markov process where the 
observable outputs can be seen, unlike the hidden layer. 

The HMM algorithm works in two steps. The HMM is trained 
in the first step using the training sequences. At the initial state (at 
time t0), the state transition probabilities and the observable output 
probabilities are randomly assigned. However, assigning these 
probabilities according to prior knowledge of the system, instead 
of the random assignment, can improve the performance of HMM. 
At this point, the model is denoted with λ0. Then, applying the 
Baum-Welch algorithm, the HMM λ0 is adjusted according to the 
input training sequences and construct the new model λ1 [27]. 
After every adjustment of λ, the probability difference of the 
previous model and the adjusted model is calculated. If the 
difference is below the preset probability difference threshold, the 
model is known to be the final HMM. Otherwise, further 
adjustment is required. In the next step, the unknown sequences 
are applied to the model and the likelihood of the sequences (i. e., 
the probability of how much a sequence conforms the HMM) are 
determined. If the probability is above the predefined acceptable 
probability, the sequence is concluded as a non-anomalous 
sequence. Otherwise, it is concluded as an anomalous one. The 
HMM algorithm has very accurate prediction of anomaly and has 
been used for complex sequence analysis. However, the model 
training time is very high in HMM algorithm. 

III. METHODOLOGY 

As previously mentioned, in our research, we aim to minimize 
the training time while keeping the accuracy of the original HMM 
algorithm. Previous studies identified that the training time for the 
HMM algorithm depends on the number of the hidden states, the 
number of the observables and the length of the training sequences 
[11]. For these reasons, we intended to minimize these parameters 
in our I-HMM to make it relatively faster than the original HMM. 
We show our research methodology in Figure 1. 

Our research methodology consists of three major steps: data 
collection, data processing and model construction. Our major 
contributions of this paper are in the data processing and 
behavioral model construction steps. 

A. Data Collection 

The data collection step consists of generating traces from a 
target system that will be used to build the model of the system. In 
this paper, we chose to focus on traces of routine calls, since the 
routine calls can reflect the presence of faults, unauthorized usage 

of resources or unusual function calls due to attacks. Same 
approach can be readily applicable to other types of traces. 

 

Figure 1.  Methodology of our research. 

There are different ways to generate traces including 
instrumenting the source code, using a debugger, or instrumenting 
the running environment (e.g OS). In this paper, we opted for 
program instrumentation in a running environment due to its 
simplicity and the availability of tools. Probes are inserted at the 
entry and exit of each routine.  

For an anomaly detection algorithm to be effective, it is 
important to have a good coverage of the input data that is used to 
build the model. We achieve this by exercising the system by 
executing the test cases, which provide good coverage of the 
system. 

Once the traces are generated, they are preprocessed to be used 
as input for an HMM system. For example, since HMM takes 
sequences of observables as input, we need to convert each raw 
trace into sequence of comma-separated routine calls. These 
sequences represent the exact sequence of routines that are called 
during the trace execution. Also some data cleansing is necessary 
such as the removal of contiguous repetitions to reduce the size of 
typical traces while keeping as much of the information they 
contain as possible. 

B. Data Processing 

As mentioned earlier, our strategy to reduce the size of 
traditional HMM (and therefore improve the learning time of the 
model) is based on n-gram extraction, which identifies the frequent 
common sub-sequences or patterns in a string; where, the length of 
the patterns can vary from one to n (the number of events in a 
trace).  

There exist several n-gram extraction algorithms. In this paper, 
we adopt the one presented in [8]. This algorithm analyzes the 
training sequences, and extracts frequent patterns, i.e., n-grams, 
from them. Unlike the fixed length n-gram extraction algorithms 
for intrusion detection [29-30], it introduces a threshold α (varies 
from 0 to 1) to control the generalization ability of the model by 
allowing different lengths of the n-grams. At the beginning, the 
algorithm extracts all unique observables from the training 
sequences and labels them as 1-gram. For example, if ECDB, 
CDBA and EACDB are the input sequences, then A, B, C, D, E 
are the valid 1-grams. 

In the consecutive steps, two n-grams of length k are combined 
to make an n-gram of length k+1. A sub-sequence or pattern pk+1 
qualifies as an n-gram, if the frequency of pk+1 is greater than α 
multiplied by the minimum frequency of qk and rk. Here, pk+1 is 
constructed from qk and rk (two valid n-grams of length k). 



Therefore, a model with a smaller α takes most of the n-grams, 
even with very low frequency, as valid n-grams and becomes very 
flexible. A very low value of α may lead to generate high false 
negative rate. Similarly, a model takes very few n-grams with high 
frequency, if the value α is significantly large. A very high value 
of α may lead to generate high false positive rate. If we take α = 
0.6 in our previous example, and combine the two valid 1-grams E 
and C, we get EC that is present in the sequence. However, the 
frequency of EC is 1 in our input data which is less than α (= 0.6) 
* minimum frequency of E and C (= 2).  Therefore, EC does not 
qualify as a valid 2-gram in the model. Whereas, CD is a 
composition of 2 valid 1-grams C and D, and the frequency of CD 
is 3 which is greater than α (= 0.6) * minimum frequency of C and 
D (= 3). Thus, CD is a valid 2-gram in the model. Similarly, DB is 
also another valid 2-gram in the model. Though, the 2-grams EC, 
BA, EA, AC are present in the input, they do not qualify as valid 
2-grams because of there low frequency. In the next step, CD and 
DB are combined to make CDB. The 3-gram CDB is valid since 
the frequency 3 is higher than α (= 0.6) * minimum frequency of 
CD and DB (= 3). Since we do not have more than one 3-gram to 
compose a 4-gram, we stop at this point. That makes our highest n-
grams to be 3-grams [8].  

In our data processing step, we extracted all valid n-grams 
from our pre-processed trace sequences by setting α = 0.6. We 
marked each n-gram with a unique identification number for future 
use. Then, we replaced the n-grams in the trace sequences with 
their corresponding unique identification numbers (n-gram id). 
Before replacing the n-grams, as described in [8], we sorted the n-
grams according to their lengths, where longer n-grams were 
replaced before the shorter ones. If there was a tie in their lengths, 
the one with higher frequency got the priority. 

C. Model Construction 

In this step, we construct the I-HMM. The process is similar to 
the construction of a traditional HMM. The set of observables in I-
HMM are the n-grams instead of mere routine calls. Since 
common patterns (n-grams) are frequently found in the trace 
sequences, at most n number of routine calls can be replaced by 
one particular n-gram in I-HMM input sequences. Therefore, the 
longer is n, the shorter the training sequence for I-HMM is since 
this reduces the cardinality of the observable set. As we will show 
in the case study, these two factors result in minimizing the overall 
training time in I-HMM over HMM. We kept the number of 
hidden states in I-HMM the same as the number of hidden states in 
a traditional HMM. We randomly assigned the state transition 
probability and iteratively adjust the training model till it reaches 
the acceptable threshold [21, 27]. 

IV. CASE STUDY 

The objective of the case study is to show whether I-HMM 

(i.e. an HMM based on n-grams – patterns of routine calls) 

improves over a traditional HMM (built based on mere sequences 

of routine calls) in terms of traning time and accuracy of the 

prediction. We achieve this by applying both approach to a 

system called Gzip [23]. All of our experiments are perfomr using 

an Intel Core 2 Duo Machine of 2.33 GHz with 4 GB of RAM. 

A. Target System 

As our target system to be modeled, we chose Gzip (GNU Zip) 
[23] for the case study. The Gzip software is a file compression 
and decompression tool for Linux that has similar functionalities 

as Winzip. We have chosen Gzip because it is written in C 
language, hence compatible with the LTTng (Linux Trace Toolkit 
Next Generation) instrumentation tool [24, 25]. 

B. Trace Generation and Pre-processing 

We applied LTTng trace instrumentation for our trace 
generation as LTTng does not add significant overhead to the 
system [24]. In order to achieve a good coverage on Gzip data, we 
explored 200 individual test cases (e.g., open, decompress, 
uncompress, help, stdout, exit, etc.) from Gzip. All traces were 
collected in an intrusion-free environment (i.e. lab) to model the 
normal behavior of Gzip. Our LTTng trace instrumentation was 
able to record all entry and exit points of Gzip routines that were 
executed during trace collection. These records were saved as 
individual trace files for further study. 

The generated raw traces needed pre-processing to act as the 
input data for both HMM and I-HMM. We wrote a parser in 
JAVA to extract all routine calls from each raw trace file and then 
to convert them into a sequence of comma-separated routine calls, 
maintaining the calling order. Furthermore, we wrote another 
JAVA program to remove the contiguous repeats of routine calls 
in each trace sequence. 

C. HMM Construction 

In our case study, we used the Weka 3.7.4 implementation of 
HMM (classifiers.bayes.HMM class) for model construction. This 
Weka implementation of HMM asks to specify the set of 
observables, the set of traces and the number of hidden states as 
inputs. We specified all routine calls as the set of observables and 
all pre-processed trace sequences as our input traces. We varied 
the number of hidden states from 5 to 20. However, our case study 
shows same accuracy for all varied number of hidden states. We 
kept the number of states as 5 to keep the training time the 
minimal. We constructed seven individual HMM models with 50, 
75, 100, 125, 150, 175 and 200 healthy traces. During each model 
construction, we recorded the training time for each of the models. 

D. I-HMM Construction 

The I-HMM model construction required more data processing 
than the HMM model construction. We extracted all n-grams (see 
Section III for details) from the sequences of routine calls using a 
JAVA program implemented by us. We kept the value of α as 0.6 
in our n-gram extractor, same as [8]. Then, we replaced the n-
grams with their corresponding identification numbers in the trace 
sequences as described in Section III. Here, we also used the 
classifiers.bayes.HMM class of Weka 3.7.4 to implement the I-
HMM model. We specified the n-gram ids as the set of 
observables and n-gram replaced traces as the input trace 
sequences. We also set the number of hidden states to be 5. We 
used 50, 75, 100, 125, 150, 175 and 200 healthy traces to 
constructed seven individual I-HMM models, like we did for 
HMM. We also documented the training time of each I-HMM 
model. 

E. HMM and I-HMM Model Verification 

After construction of each I-HMM and HMM models, we 
verified all of them by applying the cross validation technique of 
5-folds [28]. We measured the accuracy of all 14 behavioral 
models (seven models of I-HMM and seven models of HMM) by 
taking the average accuracy calculated in all five folds. The result 
analysis of the experiments is described in the next section. 



V. COMPARISON ANALYSIS 

In this section, we present a comparative analysis of the 
performance of the HMM and I-HMM algorithms. We present the 
results of our experiments in terms of training time and accuracy 
of both algorithms. 
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Figure 2.  Comparative running time of original HMM and N-gram HMM. 

In our experiments, we have seen that our I-HMM algorithm 

has always taken significant lower training time to build the 

software system behavioral models, compared to the original 

HMM algorithm (see Figure 2). More precisely, the I-HMM was 

able to reduce the training time from 31.96% to 48.44% of the 

original HMM algorithm. Another important observation from 

our experiments (shown in Figure 3) is that the training time 

differences between the HMM and I-HMM algorithms increased 

as we increased the number of traces for training the models. For 

example, our study shows that with 50 traces, the training time for 

HMM is 15.83 seconds and for I-HMM it is 10.77 seconds. 

Therefore, the training time reduces by 31.96%, if the model is 

built with 50 traces. After a gradual increase of training time 

reduction, there is a sharp rise (a rise from 37.79% to 44.38%), 

when the number of traces hits 175. Finally, the training time 

reduces by 48.44% (from 79.75 seconds to 41.12 seconds) when 

we construct a model from 200 traces. 

Training Time Reduction in I-HMM Algorithm
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Figure 3.  Comparative running time of original HMM and N-gram HMM. 

Accuracy for HMM and I-HMM Algorithms
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Figure 4.  Comparative accuracy of original HMM and N-gram HMM. 

As previously mentioned, the main advantage of the HMM 
algorithm is its accuracy, compared to other anomaly detection 
algorithms. In our experiment we also determined the accuracy of 
both HMM and I-HMM algorithms using the 5-fold cross 
validation feature available in Weka. Our experiments show that 
even though there are significant improvements in training time in 
the I-HMM algorithm, the original HMM algorithm achieves 
better accuracy. The compaction of HMM input sequences, caused 
by n-gram replacement, reduces the granularity of the input 
sequences in I-HMM. Therefore, I-HMM loses the ability to 
accurately identify anomalous behavior of the system as the 
original HMM does. In Figure 4, we can see that the accuracy of 
the original HMM is 88%, whereas it is noticeably low (72%) for 
the I-HMM algorithm with 50 traces. However, as we added more 
traces (i.e., more coverage) for behavioral model generation, the 
accuracy increases in both algorithms. Finally, with 200 traces, the 
accuracy achieved in the HMM is 98% and in the I-HMM it is 
93%. The accuracy graph, shown in Figure 4, also reflects that 
using a good coverage of behavioral data for model generation 
ensures better accuracy in anomaly detection algorithms. 
Furthermore, the graph shows that as the coverage on training data 
increases, the I-HMM algorithm achieves comparable accuracy 
with the HMM algorithm. 

VI. CONCLUSION AND FUTURE WORK 

Intrusion detection is important in applying security measures 
on software systems and computer networks. Recent studies 
showed that the conventional Network-based Intrusion Detection 
Systems (NIDS) are not sufficient for identifying all types of 
intrusions, especially those that do not generate important network 
traffic. Therefore, along with the NIDS, the Host-based Intrusion 
Detection Systems (HIDS) has become an emerging area of 
research. Recent studies have also shown that the anomaly 
detection algorithms serve a key ingredient for intrusion detection 
systems. Hidden Markov Model (HMM) algorithm, for example, 
has shown to be very accurate in detecting attacks and faults.  

However, the significantly large training time for behavioral 
model construction plays as a major obstacle for using HMM for 
anomaly detection. In order to ensure efficiency along with 
accuracy of HMM, we have introduced an improved HMM (I-
HMM) where we replaced frequent common sequence of routine 
call observables with unique n-gram observables. These 
replacements considerably reduce the size of the observable 
sequences (i.e. trace) and the number of unique observables, hence 



contribute to important reduction of training time. However, the 
use of n-grams in I-HMM results less accurate models than the 
models generated by the original HMM algorithm. Our 
preliminary studies show that the gaps between the accuracy of the 
HMM and I-HMM models can be reduced by improving the trace 
coverage during model construction. This ensures a fair tradeoff 
between the training time and accuracy in our I-HMM algorithm. 

We are aware that this is a preliminary study and that more 
needs to be done. In the future, we will add more target systems (in 
addition to Gzip) with more trace coverage during model 
construction to test the accuracy, performance and the scalability 
of our model. Moreover, we will test our model with both 
anomalous and non-anomalous data and measure the accuracy. We 
will also conduct more experiments with changing the threshold α 
using during n-grams extraction and determine an optimum value 
for each of the different target systems. 
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