
An Improved Hidden Markov Model for Anomaly

Detection Using Frequent Common Patterns

Afroza Sultana and Abdelwahab Hamou-Lhadj

Software Behavioural Analysis Research Lab

Department of Electrical and Computer Engineering

Concordia University

{af_sulta, abdelw}@ece.concordia.ca

Mario Couture
Software Analysis and Robustness Group

Defense Research and Development Canada

Valcartier, QC, Canada

mario.couture@drdc.gc.ca

Abstract-Host-based intrusion detection techniques are needed to

ensure the safety and security of software systems, especially, if

these systems handle sensitive data. Most host-based intrusion

detection systems involve building some sort of reference models

offline, usually from execution traces (in the absence of the source

code), to characterize the system healthy behavior. The models

can later be used as a baseline for online detection of abnormal

behavior. Perhaps the most popular techniques are the ones

based on the use of Hidden Markov Models (HMM). These

techniques, however, require long training time of the models,

which makes them computationally infeasible, the main reason

being the large size of typical traces. In this paper, we propose an

improved HMM using the concept of frequent common patterns.

In other words, we build models based on extracting the largest

n-grams (patterns) in the traces instead of taking each trace event

on its own. We show through a case study that our approach can

reduce the training time by 31.96%-48.44% compared to the

original HMM algorithms while keeping almost the same

accuracy rate.

Keywords- Host-based Anomanly Detection Systems; HMM; N-

gram extraction algorithm; Behavioral modeling.

I. INTRODUCTION

Intrusion detection refers to the ability to detect abnormal
behavior in a system, often caused by security attacks, viruses, and
the presence of design faults [1]. The consequences of not
detecting these anomalies can be devastating in terms of system
security and performance. A large body of research has been
devoted to the analysis of network traffic, but these Network-based
Intrusion Detection Systems (NIDS) are not always sufficient and
can be easily evaded by “subtle” attacks that do not generate
important network traffic, and hence go undetected by even the
most advanced NIDS. To overcome this limitation, recently, there
has been an important shift in this area to the techniques that
permit the detection of intrusions at the host level, i.e., Host-based
Intrusion Detection Systems (HIDS) [2, 3].

In HIDS, the intrusions are detected by monitoring and
analyzing the system or application data that is collected from the
host computer. Since an HIDS depends on the information about
the host computer, it should, in principle, be able to detect an
important range of anomalies that can cause the system to deviate
from its normal behavior. Host-based intrusion detection
techniques can be grouped into two categories: misuse or outlier
detection [4] and anomaly detection [5]. The misuse detection
techniques require prior knowledge of the potential intrusions (for
example, virus, attacks, threats, etc.) of the system. They look for
known intrusion patterns in the system from the prior knowledge

of the intrusions (through signatures) and identify them as
intrusions. One major drawback of misuse detection techniques is
that the intrusion must be known beforehand to be identified.
Therefore, any new intrusion, such as a new type of viruses will be
unidentified by the misuse detection techniques.

The anomaly detection techniques, the second category and
also the focus of this paper, operate by modeling the “normal”
behavior of the host computer. The prior knowledge of normal or
acceptable behavior of a system is modeled ensuring that the
system is running in a safe environment without the presence of
any intrusion. The system is then put in operation. The anomaly
detection technique correlates the behavior of the system in
operation with the one already built; it identifies any significant
deviating behavior as an intrusion. The main advantage of the
anomaly detection algorithms is that they do not require any prior
knowledge of possible intrusions, hence, are able to identify any
new virus attack, zero-day attacks, unknown system faults, and
potential threats to the system.

There exist several techniques for building reference models
such as machine learning [6-8], Hidden Markov Models [9-11],
statistical profiling [5, 12- 14], and data mining [15-20]. Among
these approaches, Hidden Markov Models (HMM) [21] have been
shown to be very promising for anomaly detection over several
other techniques because of their high accuracy in identifying
intrusions [9]. However, the HMM-based algorithms suffer from
long training time during the construction of the models, which
hinders their efficiency [9].

In this paper, we present an Improved Hidden Markov Model
(I-HMM) algorithm using the concept of frequent common
patterns found in the trace sequences [8]. In other words, we use
the frequent common patterns to build the HMM models instead of
the trace events. By doing this, we reduce significantly the length
of the training sequences, which in turn result in more compact
HMM models. To extract these patterns, we use n-grams
extraction algorithms, a concept used in text mining [22]. We
show the effectiveness of our approach by applying it to building a
behavioral model for a system called Gzip [23], which is a file
compression and decompression software for Linux. Using the
Linux Tracing Toolkit Next Generation (LTTng) [24,25] trace
instrumentation tool, we collect traces of routine calls by
exercising the system’s features. We also use Weka 3.7.4 [26] for
behavioral modeling and model verification for both HMM and I-
HMM algorithms. Our study shows that our I-HMM algorithm
reduces the model generation time by approximately 31.96% -
48.44% compared to the original HMM. Furthermore, the training
time reduction gets even better in I-HMM when the trace coverage
increases, hence, further improving the overall accuracy of the I-
HMM.

The organization of this paper is as follows. Section II gives an
overview of Hidden Markov Models (HMM). Our methodology
for reducing the learning time of HMM is explained in Section III.
Our case study is described in Section IV. The comparative results
and analysis are presented in Section V. In Section VI, we discuss
the conclusion and future work.

II. HIDDEN MARKOV MODELS

A Hidden Markov Model (HMM) is a double stochastic model
[21]. The model is denoted by λ (A, B, π), where A is the set of
observables, B is the set of hidden states, and π is the set of
transition probabilities, i.e., the probabilities from going to one
hidden state to another. This model is known as double stochastic
since there is a hidden layer that contains some hidden states. This
hidden layer follows the principles of Markov process. The other
layer contains the states of the observables in a particular time t of
the model construction. This is also a Markov process where the
observable outputs can be seen, unlike the hidden layer.

The HMM algorithm works in two steps. The HMM is trained
in the first step using the training sequences. At the initial state (at
time t0), the state transition probabilities and the observable output
probabilities are randomly assigned. However, assigning these
probabilities according to prior knowledge of the system, instead
of the random assignment, can improve the performance of HMM.
At this point, the model is denoted with λ0. Then, applying the
Baum-Welch algorithm, the HMM λ0 is adjusted according to the
input training sequences and construct the new model λ1 [27].
After every adjustment of λ, the probability difference of the
previous model and the adjusted model is calculated. If the
difference is below the preset probability difference threshold, the
model is known to be the final HMM. Otherwise, further
adjustment is required. In the next step, the unknown sequences
are applied to the model and the likelihood of the sequences (i. e.,
the probability of how much a sequence conforms the HMM) are
determined. If the probability is above the predefined acceptable
probability, the sequence is concluded as a non-anomalous
sequence. Otherwise, it is concluded as an anomalous one. The
HMM algorithm has very accurate prediction of anomaly and has
been used for complex sequence analysis. However, the model
training time is very high in HMM algorithm.

III. METHODOLOGY

As previously mentioned, in our research, we aim to minimize
the training time while keeping the accuracy of the original HMM
algorithm. Previous studies identified that the training time for the
HMM algorithm depends on the number of the hidden states, the
number of the observables and the length of the training sequences
[11]. For these reasons, we intended to minimize these parameters
in our I-HMM to make it relatively faster than the original HMM.
We show our research methodology in Figure 1.

Our research methodology consists of three major steps: data
collection, data processing and model construction. Our major
contributions of this paper are in the data processing and
behavioral model construction steps.

A. Data Collection

The data collection step consists of generating traces from a
target system that will be used to build the model of the system. In
this paper, we chose to focus on traces of routine calls, since the
routine calls can reflect the presence of faults, unauthorized usage

of resources or unusual function calls due to attacks. Same
approach can be readily applicable to other types of traces.

Figure 1. Methodology of our research.

There are different ways to generate traces including
instrumenting the source code, using a debugger, or instrumenting
the running environment (e.g OS). In this paper, we opted for
program instrumentation in a running environment due to its
simplicity and the availability of tools. Probes are inserted at the
entry and exit of each routine.

For an anomaly detection algorithm to be effective, it is
important to have a good coverage of the input data that is used to
build the model. We achieve this by exercising the system by
executing the test cases, which provide good coverage of the
system.

Once the traces are generated, they are preprocessed to be used
as input for an HMM system. For example, since HMM takes
sequences of observables as input, we need to convert each raw
trace into sequence of comma-separated routine calls. These
sequences represent the exact sequence of routines that are called
during the trace execution. Also some data cleansing is necessary
such as the removal of contiguous repetitions to reduce the size of
typical traces while keeping as much of the information they
contain as possible.

B. Data Processing

As mentioned earlier, our strategy to reduce the size of
traditional HMM (and therefore improve the learning time of the
model) is based on n-gram extraction, which identifies the frequent
common sub-sequences or patterns in a string; where, the length of
the patterns can vary from one to n (the number of events in a
trace).

There exist several n-gram extraction algorithms. In this paper,
we adopt the one presented in [8]. This algorithm analyzes the
training sequences, and extracts frequent patterns, i.e., n-grams,
from them. Unlike the fixed length n-gram extraction algorithms
for intrusion detection [29-30], it introduces a threshold α (varies
from 0 to 1) to control the generalization ability of the model by
allowing different lengths of the n-grams. At the beginning, the
algorithm extracts all unique observables from the training
sequences and labels them as 1-gram. For example, if ECDB,
CDBA and EACDB are the input sequences, then A, B, C, D, E
are the valid 1-grams.

In the consecutive steps, two n-grams of length k are combined
to make an n-gram of length k+1. A sub-sequence or pattern pk+1
qualifies as an n-gram, if the frequency of pk+1 is greater than α
multiplied by the minimum frequency of qk and rk. Here, pk+1 is
constructed from qk and rk (two valid n-grams of length k).

Therefore, a model with a smaller α takes most of the n-grams,
even with very low frequency, as valid n-grams and becomes very
flexible. A very low value of α may lead to generate high false
negative rate. Similarly, a model takes very few n-grams with high
frequency, if the value α is significantly large. A very high value
of α may lead to generate high false positive rate. If we take α =
0.6 in our previous example, and combine the two valid 1-grams E
and C, we get EC that is present in the sequence. However, the
frequency of EC is 1 in our input data which is less than α (= 0.6)
* minimum frequency of E and C (= 2). Therefore, EC does not
qualify as a valid 2-gram in the model. Whereas, CD is a
composition of 2 valid 1-grams C and D, and the frequency of CD
is 3 which is greater than α (= 0.6) * minimum frequency of C and
D (= 3). Thus, CD is a valid 2-gram in the model. Similarly, DB is
also another valid 2-gram in the model. Though, the 2-grams EC,
BA, EA, AC are present in the input, they do not qualify as valid
2-grams because of there low frequency. In the next step, CD and
DB are combined to make CDB. The 3-gram CDB is valid since
the frequency 3 is higher than α (= 0.6) * minimum frequency of
CD and DB (= 3). Since we do not have more than one 3-gram to
compose a 4-gram, we stop at this point. That makes our highest n-
grams to be 3-grams [8].

In our data processing step, we extracted all valid n-grams
from our pre-processed trace sequences by setting α = 0.6. We
marked each n-gram with a unique identification number for future
use. Then, we replaced the n-grams in the trace sequences with
their corresponding unique identification numbers (n-gram id).
Before replacing the n-grams, as described in [8], we sorted the n-
grams according to their lengths, where longer n-grams were
replaced before the shorter ones. If there was a tie in their lengths,
the one with higher frequency got the priority.

C. Model Construction

In this step, we construct the I-HMM. The process is similar to
the construction of a traditional HMM. The set of observables in I-
HMM are the n-grams instead of mere routine calls. Since
common patterns (n-grams) are frequently found in the trace
sequences, at most n number of routine calls can be replaced by
one particular n-gram in I-HMM input sequences. Therefore, the
longer is n, the shorter the training sequence for I-HMM is since
this reduces the cardinality of the observable set. As we will show
in the case study, these two factors result in minimizing the overall
training time in I-HMM over HMM. We kept the number of
hidden states in I-HMM the same as the number of hidden states in
a traditional HMM. We randomly assigned the state transition
probability and iteratively adjust the training model till it reaches
the acceptable threshold [21, 27].

IV. CASE STUDY

The objective of the case study is to show whether I-HMM

(i.e. an HMM based on n-grams – patterns of routine calls)

improves over a traditional HMM (built based on mere sequences

of routine calls) in terms of traning time and accuracy of the

prediction. We achieve this by applying both approach to a

system called Gzip [23]. All of our experiments are perfomr using

an Intel Core 2 Duo Machine of 2.33 GHz with 4 GB of RAM.

A. Target System

As our target system to be modeled, we chose Gzip (GNU Zip)
[23] for the case study. The Gzip software is a file compression
and decompression tool for Linux that has similar functionalities

as Winzip. We have chosen Gzip because it is written in C
language, hence compatible with the LTTng (Linux Trace Toolkit
Next Generation) instrumentation tool [24, 25].

B. Trace Generation and Pre-processing

We applied LTTng trace instrumentation for our trace
generation as LTTng does not add significant overhead to the
system [24]. In order to achieve a good coverage on Gzip data, we
explored 200 individual test cases (e.g., open, decompress,
uncompress, help, stdout, exit, etc.) from Gzip. All traces were
collected in an intrusion-free environment (i.e. lab) to model the
normal behavior of Gzip. Our LTTng trace instrumentation was
able to record all entry and exit points of Gzip routines that were
executed during trace collection. These records were saved as
individual trace files for further study.

The generated raw traces needed pre-processing to act as the
input data for both HMM and I-HMM. We wrote a parser in
JAVA to extract all routine calls from each raw trace file and then
to convert them into a sequence of comma-separated routine calls,
maintaining the calling order. Furthermore, we wrote another
JAVA program to remove the contiguous repeats of routine calls
in each trace sequence.

C. HMM Construction

In our case study, we used the Weka 3.7.4 implementation of
HMM (classifiers.bayes.HMM class) for model construction. This
Weka implementation of HMM asks to specify the set of
observables, the set of traces and the number of hidden states as
inputs. We specified all routine calls as the set of observables and
all pre-processed trace sequences as our input traces. We varied
the number of hidden states from 5 to 20. However, our case study
shows same accuracy for all varied number of hidden states. We
kept the number of states as 5 to keep the training time the
minimal. We constructed seven individual HMM models with 50,
75, 100, 125, 150, 175 and 200 healthy traces. During each model
construction, we recorded the training time for each of the models.

D. I-HMM Construction

The I-HMM model construction required more data processing
than the HMM model construction. We extracted all n-grams (see
Section III for details) from the sequences of routine calls using a
JAVA program implemented by us. We kept the value of α as 0.6
in our n-gram extractor, same as [8]. Then, we replaced the n-
grams with their corresponding identification numbers in the trace
sequences as described in Section III. Here, we also used the
classifiers.bayes.HMM class of Weka 3.7.4 to implement the I-
HMM model. We specified the n-gram ids as the set of
observables and n-gram replaced traces as the input trace
sequences. We also set the number of hidden states to be 5. We
used 50, 75, 100, 125, 150, 175 and 200 healthy traces to
constructed seven individual I-HMM models, like we did for
HMM. We also documented the training time of each I-HMM
model.

E. HMM and I-HMM Model Verification

After construction of each I-HMM and HMM models, we
verified all of them by applying the cross validation technique of
5-folds [28]. We measured the accuracy of all 14 behavioral
models (seven models of I-HMM and seven models of HMM) by
taking the average accuracy calculated in all five folds. The result
analysis of the experiments is described in the next section.

V. COMPARISON ANALYSIS

In this section, we present a comparative analysis of the
performance of the HMM and I-HMM algorithms. We present the
results of our experiments in terms of training time and accuracy
of both algorithms.

Training Time for HMM and I-HMM Algorithms

33.48

69.99

79.75

15.83

23.14

41.74

50.09

10.77

15.65

22.33

26.36
31.16

36.16

41.12

0

10

20

30

40

50

60

70

80

90

50 75 100 125 150 175 200

Numer of Traces

T
ra

in
in

g
 T

im
e

 (
S

e
c
o

n
d

s)

HMM I-HMM

Figure 2. Comparative running time of original HMM and N-gram HMM.

In our experiments, we have seen that our I-HMM algorithm

has always taken significant lower training time to build the

software system behavioral models, compared to the original

HMM algorithm (see Figure 2). More precisely, the I-HMM was

able to reduce the training time from 31.96% to 48.44% of the

original HMM algorithm. Another important observation from

our experiments (shown in Figure 3) is that the training time

differences between the HMM and I-HMM algorithms increased

as we increased the number of traces for training the models. For

example, our study shows that with 50 traces, the training time for

HMM is 15.83 seconds and for I-HMM it is 10.77 seconds.

Therefore, the training time reduces by 31.96%, if the model is

built with 50 traces. After a gradual increase of training time

reduction, there is a sharp rise (a rise from 37.79% to 44.38%),

when the number of traces hits 175. Finally, the training time

reduces by 48.44% (from 79.75 seconds to 41.12 seconds) when

we construct a model from 200 traces.

Training Time Reduction in I-HMM Algorithm

0

10

20

30

40

50

60

50 75 100 125 150 175 200

Numer of Traces

T
ra

in
in

g
 T

im
e

 R
e

d
u

ct
io

n
 (

%
)

Figure 3. Comparative running time of original HMM and N-gram HMM.

Accuracy for HMM and I-HMM Algorithms

88.00

93.33 95.00
96.80

97.33 97.71 98.00

72.00

78.67 85.00 88.00 88.00 89.71

93.00

0.00

20.00

40.00

60.00

80.00

100.00

50 75 100 125 150 175 200

Numer of Traces

A
cc

u
ra

cy
 (

%
)

HMM

I-HMM

Figure 4. Comparative accuracy of original HMM and N-gram HMM.

As previously mentioned, the main advantage of the HMM
algorithm is its accuracy, compared to other anomaly detection
algorithms. In our experiment we also determined the accuracy of
both HMM and I-HMM algorithms using the 5-fold cross
validation feature available in Weka. Our experiments show that
even though there are significant improvements in training time in
the I-HMM algorithm, the original HMM algorithm achieves
better accuracy. The compaction of HMM input sequences, caused
by n-gram replacement, reduces the granularity of the input
sequences in I-HMM. Therefore, I-HMM loses the ability to
accurately identify anomalous behavior of the system as the
original HMM does. In Figure 4, we can see that the accuracy of
the original HMM is 88%, whereas it is noticeably low (72%) for
the I-HMM algorithm with 50 traces. However, as we added more
traces (i.e., more coverage) for behavioral model generation, the
accuracy increases in both algorithms. Finally, with 200 traces, the
accuracy achieved in the HMM is 98% and in the I-HMM it is
93%. The accuracy graph, shown in Figure 4, also reflects that
using a good coverage of behavioral data for model generation
ensures better accuracy in anomaly detection algorithms.
Furthermore, the graph shows that as the coverage on training data
increases, the I-HMM algorithm achieves comparable accuracy
with the HMM algorithm.

VI. CONCLUSION AND FUTURE WORK

Intrusion detection is important in applying security measures
on software systems and computer networks. Recent studies
showed that the conventional Network-based Intrusion Detection
Systems (NIDS) are not sufficient for identifying all types of
intrusions, especially those that do not generate important network
traffic. Therefore, along with the NIDS, the Host-based Intrusion
Detection Systems (HIDS) has become an emerging area of
research. Recent studies have also shown that the anomaly
detection algorithms serve a key ingredient for intrusion detection
systems. Hidden Markov Model (HMM) algorithm, for example,
has shown to be very accurate in detecting attacks and faults.

However, the significantly large training time for behavioral
model construction plays as a major obstacle for using HMM for
anomaly detection. In order to ensure efficiency along with
accuracy of HMM, we have introduced an improved HMM (I-
HMM) where we replaced frequent common sequence of routine
call observables with unique n-gram observables. These
replacements considerably reduce the size of the observable
sequences (i.e. trace) and the number of unique observables, hence

contribute to important reduction of training time. However, the
use of n-grams in I-HMM results less accurate models than the
models generated by the original HMM algorithm. Our
preliminary studies show that the gaps between the accuracy of the
HMM and I-HMM models can be reduced by improving the trace
coverage during model construction. This ensures a fair tradeoff
between the training time and accuracy in our I-HMM algorithm.

We are aware that this is a preliminary study and that more
needs to be done. In the future, we will add more target systems (in
addition to Gzip) with more trace coverage during model
construction to test the accuracy, performance and the scalability
of our model. Moreover, we will test our model with both
anomalous and non-anomalous data and measure the accuracy. We
will also conduct more experiments with changing the threshold α
using during n-grams extraction and determine an optimum value
for each of the different target systems.

Acknowledgement: This project is partly supported by the
Canadian Natural Science and Engineering Research Council
(NSERC) and Defence R&D Canada (DRDC). The authors would
like to thank Dr. Shariyar Murtaza for providing the data used for
the experiments.

REFERENCES

[1] V. V. Phohaha, “The Springer Internet Security Dictionary,” Springer-
Verlag, 2002.

[2] P. E. Proctor, “The Practical Intrusion Detection Handbook,” Prentice
Hall PTR, NJ, USA, 2001.

[3] V. Chandola, A. Banerjee, V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41(3), article: 15, July 2009.

[4] S. Kumar, and E. H. Spafford, “A pattern matching model for misuse
intrusion detection,” In Proceedings of the National Computer Security
Conference, Baltimore, MD, 1994, pp. 11–21.

[5] D. E. Denning, “An Intrusion Detection Model,” IEEE Transactions on
Software Engineering, SE, vol. 13(2), 1987, pp. 222-232.

[6] S. Forrest, P. D’haeseleer, and P. Helam, “An immunological approach
to change detection: Algorithms, analysis and implications”. In
Proceedings of the IEEE Symposium on Security and Privacy, IEEE
Computer Society, vol. 110, 1996.

[7] D. Endler, “Intrusion detection: applying machine learning to solaris
audit data,” In Proceedings of the IEEE Annual Computer Security
Application Conference, Society Press, 1998, pp. 268 – 279.

[8] Guofei Jiang, Haifeng Chen, Cristian Ungureanu and Kenji Yoshihara,
“Trace analysis for fault detection for application server”, Handbook of
Automatic Computing: Concepts, Infrastructures, and Applications,
edited by S. Hariri, and P. Parashar, CRC Press, 2007.

[9] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: Alternate data models,” In Proceedings of the IEEE
ISRSP. IEEE Computer Society, 1999, pp. 133 – 145.

[10] J. Hu, Q. Dong, X. Yu, and H. H. Chen, “A simple and efficient hidden
markov model scheme for host-based anomaly intrusion detection,”
IEEE Netw. vol. 23(1), 2009, pp. 42 – 47.

[11] Jiankun Hu, “Host-Based Anomaly Intrusion Detection”, Handbook of
Information and Communication Security, Springer, 2010.

[12] S. Forrest, S. A. Hofmeyr, A. Somayaji. and T. A. Longstaff, “A sense
of self for unix processes,” In Proceedings of the IEEE ISRSP, 1996, pp.
120 – 128.

[13] E. Eskin, “Anomaly detection over noisy data using learned probability
distributions,” In Proceedings of the 17th International Conference on
Machine Learning. Morgan Kaufmann Publishers Inc., 2000, pp. 255–
262.

[14] E. Eskin, W. Lee, and S. Stolfo, “Modeling system call for intrusion
detection using dynamic window sizes,” In Proceedings of DARPA
Information Survivability Conference and Exposition (DISCEX), 2001.

[15] A. K. Ghosh, and A. Schwartzbard, “A study in using neural networks
for anomaly and misuse detection,” In Proceedings of the 8th USENIX
Security Symposium, 1999.

[16] N. Abouzakhar, A. Gani, G. Manson, M. Abutbel, and D. King,
“Bayesian learning network approach to cybercrime detection,” In
Proceedings of the 2003 Post Graduate Networking Conference,
Liverpool, United Kingdom, 2003.

[17] W. Hu, Y. Liao, and V. R. Vemuri, “Robust anomaly detection using
support vector machines,” In Proceedings of the International
Conference on Machine Learning. Morgan Kaufmann Publishers Inc.,
2003, pp. 282–289.

[18] G. Stein, C. Bing, A. S. Wu, and K. A. Hua, “Decision tree classifies for
network intrusion detection with GA-based feature selection,” in
Proceedings of the 43rd Annual Southeast Regional Conference, Georgia,
2005, pp. 136 – 141.

[19] Q. Xu, W. Pei, and Q. Zhao, “An intrusion detection approach based on
understandable neural network trees,” Journal of Electronics, 2007, pp.
574 – 579.

[20] R. C. Chen, K. F. Cheng, Y. H. Chen, C. F., Hsieh, “Using Rough Set
and Support Vector Machine for Network Intrusion Detection System,”
In proceedings of the First Asian Conference on Intelligent Information
and Database Systems, 2009, pp. 465 – 470.

[21] L. R. Rabiner and B. H. Juang, “An introduction to hidden markov
models,” IEEE ASSP Magazine, 1986.

[22] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.
Mercer, “Class-based n-gram models of natural language”,
Computational Linguistics, vol. 18, pp. 467–479, 1992.

[23] Gzip Official Website http://www.gzip.org/

[24] M. Desnoyers, and M. R. Degenais, “The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux,” In Proceedings of
Ottawa Linux Symposium, Ottawa, Canada, July 19 – 22, 2006.

[25] LTTng Official Website. http://lttng.org

[26] Weka Official Website http://www.cs.waikato.ac.nz/ml/weka/

[27] Leonard E. Baum, Ted Petrie, George Soules and Norman Weiss, “A
Maximization Technique Occurring in the Statistical Analysis of
Probabilistic Functions of Markov Chains”, The Annals of Mathematical
Statistics, vol. 41(1), February, 1970, pp. 164 – 171.

[28] J. Han, and M. Kamber, “Data Mining: Concepts and Techniques,” 2nd
edition, San Francisco: Elsevier, 2006.

[29] S. Forrest, S. A. Hofmeyr, A. Somayaji and T. A. Longstaff, “A sense of
self for Unix processes,” In Proceedings of IEEE Symposium on
Security and Privacy, Oakland, CA, USA, May 6–8, 1996, pp. 120–128.

[30] C. C. Michael and A. Ghosh, “Simple, state-based approaches to
program-based anomaly detection,” ACM Transaction on Information
and System Security (TIISSEC), vol. 5(3), pp. 203 – 237, August 2002.

