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About this template

Sources of performance variations

◉ Update to a program, library or OS
◉ Interaction between tasks
◉ Programming error
◉ Different system load

Developers are not aware of this

Tracing

◉ Lots of details

Introduction

Performance
is a critical 

requirement
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“Can we facilitate the diagnosis of 
performance variations with an 

algorithm that automatically 
identifies differences between groups 

of execution traces?
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Dapper Sigelman & al. (2010)

◉ Associate an identifier to 
incoming requests.

◉ Propagate the identifier.

About this template1. Literature Review / Extracting Task Executions

Critical Path in TraceCompass
                                                             Giraldeau & Dagenais 

◉ Heuristic based on kernel 
events.

pid=1

pid=2

req=1

req=1

pid=1

pid=2

wake-up
target pid = 2

wake-up
target pid = 1

5



About this template1. Literature Review / Comparing Task Executions

Differential Flame Graphs Gregg (2014)

Image credit: Jonas Trümper / With permission.

Image credit: Brendan Gregg / With permission.

TraceDiff    Trumper & al. (2013)Spectroscope Sambasivan & al. (2007)

DB

23% 77%

App App

DB

99% 1%

App App

“Frames” mode of Chrome
Chromium Authors
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About this template1. Literature Review / Call Stack

Without Frame Pointer
                                                      Oakley and Bratus (2011)

◉ Extract rules from the .eh_frame 
section of ELF.

◉ Implemented by libunwind.

Local variables

Previous ebp

Return address

ebp

Args

Local variables

Previous ebp

Return address

Args

With Frame Pointer

◉ Traverse a linked list.

IP CFA ebp eip

0x0001 ... ... ...

0x0002 ... ... ...
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About this template2. Solution / Tracing call stacks

cpu_stack

◉ Generated periodically 
when a thread is running.

◉ Using ITIMER_PROF.

syscall_stack

◉ Generated on long system calls.
◉ Duration of system calls tracked 

in a kernel module.
◉ Stack captured from a signal 

handler.

cpu_  
stack

syscall_
stack

cpu_  
stack

cpu_  
stack
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Kernel events to compute the critical path

+



About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1

1 Call A

2 Call B

3

4

5

6 Return B

7 Call X

8 Return X

9 Return A
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About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1 Thread 2

1 Call A

2 Call B

3

Wait 
thread 2

Call X

4 Wait disk

5 Return X

6 Return B

7 Call X

8 Return X

9 Return A
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About this template2. Solution / Enhanced Calling Context Tree

◉ Any type of latency.
○ CPU usage
○ Disk / network
○ Dependencies 

between threads

◉ Context of each latency.

◉ State History Tree.
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About this template2. Solution / Comparison View

Filters to build groups of executions. 

Group A Group B

Total Time

Running Time

Bytes read
from disk
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About this template2. Solution / Comparison View

« Enhanced» Differential Flame Graph
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Let’s review some concepts

MUTEX
Mutex held during a long 
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to 

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation 

preempted by a low 
priority thread. 

DISK
Web request slowed down 
by the OS committing data 

to the disk.

3. Case Studies
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Demo
Try it yourself in a browser:

fdoray.github.io/tracecompare

19

http://fdoray.github.io/tracecompare/
http://fdoray.github.io/tracecompare/
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Let’s review some concepts

PRIME
CPU-Only.

Stacks: 0.1%

Stacks + critical: 0.2%

BABELTRACE
Short system calls.

Stacks: 1%

Stacks + critical: 1%

FIND
Long disk requests.

Stacks: 2%

Stacks + critical: 5%

MONGOD
Multi-thread.

Stacks: 2%

Stacks + critical: 9%

4. Performance Evaluation / Global overhead
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BABELTRACE
Short system calls.
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FIND
Long disk requests.

Stacks: 2%

Stacks + critical: 5%

MONGOD
Multi-thread.

Stacks: 2%

Stacks + critical: 9%

4. Performance Evaluation

ETW on Windows: 0.0%

DTrace on Mac: 1.0%

ETW on Windows: 19%

DTrace on Mac: 22%

* MacBook Pro with Quad-core Intel® Core i7™-3720QM at 2.6 GHz, 8 GB RAM, SSD for Windows and Mac benchmarks. 22



About this templateConclusion

Summary

◉ Trace call stacks.
◉ Enhanced calling context 

trees.
◉ Compare groups of 

executions using 
histograms and flame 
graphs.

◉ Works with open-source 
and enterprise apps.

Future Work

◉ Support more interactions:
○ VMs
○ GPU
○ Application-specific

◉ Dynamic languages / JIT
◉ Support code refactoring
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Thanks!

ANY QUESTIONS?

Try the demo: 

fdoray.github.io/tracecompare
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