
Diagnosing Performance
Variations by Comparing

Execution Traces

François Doray
Progress Report Meeting - May 2015

1

About this template

Sources of performance variations

◉ Update to a program, library or OS
◉ Interaction between tasks
◉ Programming error
◉ Different system load

Developers are not aware of this

Tracing

◉ Lots of details

Introduction

Performance
is a critical

requirement

2

“Can we facilitate the diagnosis of
performance variations with an

algorithm that automatically
identifies differences between groups

of execution traces?

3

a
1.

Literature Review

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

4

Dapper Sigelman & al. (2010)

◉ Associate an identifier to
incoming requests.

◉ Propagate the identifier.

About this template1. Literature Review / Extracting Task Executions

Critical Path in TraceCompass
 Giraldeau & Dagenais

◉ Heuristic based on kernel
events.

pid=1

pid=2

req=1

req=1

pid=1

pid=2

wake-up
target pid = 2

wake-up
target pid = 1

5

About this template1. Literature Review / Comparing Task Executions

Differential Flame Graphs Gregg (2014)

Image credit: Jonas Trümper / With permission.

Image credit: Brendan Gregg / With permission.

TraceDiff Trumper & al. (2013)Spectroscope Sambasivan & al. (2007)

DB

23% 77%

App App

DB

99% 1%

App App

“Frames” mode of Chrome
Chromium Authors

6

About this template1. Literature Review / Call Stack

Without Frame Pointer
 Oakley and Bratus (2011)

◉ Extract rules from the .eh_frame
section of ELF.

◉ Implemented by libunwind.

Local variables

Previous ebp

Return address

ebp

Args

Local variables

Previous ebp

Return address

Args

With Frame Pointer

◉ Traverse a linked list.

IP CFA ebp eip

0x0001

0x0002

7

a
1.

Literature Review

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

8

About this template2. Solution / Tracing call stacks

cpu_stack

◉ Generated periodically
when a thread is running.

◉ Using ITIMER_PROF.

syscall_stack

◉ Generated on long system calls.
◉ Duration of system calls tracked

in a kernel module.
◉ Stack captured from a signal

handler.

cpu_
stack

syscall_
stack

cpu_
stack

cpu_
stack

9

About this template2. Solution / Tracing call stacks

cpu_stack

◉ Generated periodically
when a thread is running.

◉ Using ITIMER_PROF.

syscall_stack

◉ Generated on long system calls.
◉ Duration of system calls tracked

in a kernel module.
◉ Stack captured from a signal

handler.

cpu_
stack

syscall_
stack

cpu_
stack

cpu_
stack

10

Kernel events to compute the critical path

+

About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1

1 Call A

2 Call B

3

4

5

6 Return B

7 Call X

8 Return X

9 Return A
11

About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1 Thread 2

1 Call A

2 Call B

3

Wait
thread 2

Call X

4 Wait disk

5 Return X

6 Return B

7 Call X

8 Return X

9 Return A
12

About this template2. Solution / Enhanced Calling Context Tree

◉ Any type of latency.
○ CPU usage
○ Disk / network
○ Dependencies

between threads

◉ Context of each latency.

◉ State History Tree.

13

About this template2. Solution / Comparison View

Filters to build groups of executions.

Group A Group B

Total Time

Running Time

Bytes read
from disk

14

About this template2. Solution / Comparison View

« Enhanced» Differential Flame Graph

15

a
1.

Literature Review

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

16

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

17

ZZZZZZZzz

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

18

ZZZZZZZzz

Demo
Try it yourself in a browser:

fdoray.github.io/tracecompare

19

http://fdoray.github.io/tracecompare/
http://fdoray.github.io/tracecompare/

a
1.

Literature Review

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

20

Let’s review some concepts

PRIME
CPU-Only.

Stacks: 0.1%

Stacks + critical: 0.2%

BABELTRACE
Short system calls.

Stacks: 1%

Stacks + critical: 1%

FIND
Long disk requests.

Stacks: 2%

Stacks + critical: 5%

MONGOD
Multi-thread.

Stacks: 2%

Stacks + critical: 9%

4. Performance Evaluation / Global overhead

21

Let’s review some concepts

PRIME
CPU-Only.

Stacks: 0.1%

Stacks + critical: 0.2%

BABELTRACE
Short system calls.

Stacks: 1%

Stacks + critical: 1%

FIND
Long disk requests.

Stacks: 2%

Stacks + critical: 5%

MONGOD
Multi-thread.

Stacks: 2%

Stacks + critical: 9%

4. Performance Evaluation

ETW on Windows: 0.0%

DTrace on Mac: 1.0%

ETW on Windows: 19%

DTrace on Mac: 22%

* MacBook Pro with Quad-core Intel® Core i7™-3720QM at 2.6 GHz, 8 GB RAM, SSD for Windows and Mac benchmarks. 22

About this templateConclusion

Summary

◉ Trace call stacks.
◉ Enhanced calling context

trees.
◉ Compare groups of

executions using
histograms and flame
graphs.

◉ Works with open-source
and enterprise apps.

Future Work

◉ Support more interactions:
○ VMs
○ GPU
○ Application-specific

◉ Dynamic languages / JIT
◉ Support code refactoring

23

Thanks!

ANY QUESTIONS?

Try the demo:

fdoray.github.io/tracecompare

24

References

The Chromium Authors, “Performance profiling with the timeline”, https://developer.chrome.com/devtools/docs/timeline, consulted on
March 24th 2015.

F. Giraldeau and M. R. Dagenais, “Approximation of critical path using low-level system events”, not published yet.

B. Gregg, “Differential flame graphs”, http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html, November 2014,
consulted on March 24th, 2015.

J. Oakley and S. Bratus, “Exploiting the hard-working dwarf : Trojan and exploit techniques with no native executable code”, in
Proceedings of the 5th USENIX Conference on Offensive Technologies, WOOT’11. Berkeley, CA, USA : USENIX Association, 2011, p. 11.

R. R. Sambasivan, A. X. Zheng, E. Thereska, and G. R. Ganger, “Categorizing and differencing system behaviours”, Hot Topics in Autonomic
Computing, p. 2, June 2007.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale
distributed systems tracing infrastructure”, Google research, 2010.

J. Trumper, J. Dollner, and A. Telea, “Multiscale visual comparison of execution traces”, in IEEE 21st International Conference on Program
Comprehension (ICPC), May 2013, pp. 53–62. DOI : 10.1109/ICPC.2013.6613833.

25

Credits

Presentation by François Doray, master’s student at the
Distributed open reliable systems analysis lab (DORSAL)
of Polytechnique Montreal.

Special thanks to SlidesCarnival for releasing this
presentation template for free (CC BY 4.0).

26

http://www.dorsal.polymtl.ca/en
http://www.slidescarnival.com/
http://creativecommons.org/licenses/by/4.0/

