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ABSTRACT
Dynamic analysis through execution traces is frequently
used to analyze the runtime behavior of software systems.
However, tracing long running executions generates volu-
minous data, which is complicated to analyse and manage.
Extracting interesting performance or correctness character-
istics out of large traces of data from several processes and
threads is a challenging task. Trace abstraction and visu-
alization are potential solutions to alleviate this challenge.
Several efforts have been made over the years in many sub-
fields of computer science for trace data collection, main-
tenance, analysis, and visualization. Many analyses start
with an inspection of an overview of the trace, before dig-
ging deeper and studying more focused and detailed data.
These techniques are common and well supported in geo-
graphical information systems, automatically adjusting the
level of details depending on the scale. However, most trace
visualization tools operate at a single level of representation,
which is not adequate to support multi-level analysis. So-
phisticated techniques and heuristics are needed to address
this problem. Multi-scale (multi-level) visualization with
support for zoom and focus operations is an effective way
to enable this kind of analysis. Considerable research and
several surveys are proposed in the literature in the field of
trace visualization. However, multi-scale visualization has
yet received little attention. In this paper, we provide a sur-
vey and methodological structure for categorizing tools and
techniques aiming at multi-scale abstraction and visualiza-
tion of execution trace data, and discuss the requirements
and challenges faced in order to meet evolving user demands.

1. INTRODUCTION
Software comprehension is the process of understanding of
how a software program behaves. It is an important step for
both software forward and reverse engineering, which facili-
tates software development, optimization, maintenance, bug
fixing, as well as software performance analysis [1]. Soft-
ware comprehension is usually achieved by using static or
dynamic analysis [2].

Static analysis refers to the use of program source code and
other software artifacts to understand the meaning and func-
tion of software modules and their interactions [3]. Although
the software source codes and documents can be useful to
understand the meaning of a program, there are situations
where they are not very helpful. For instance, when the
documents are outdated, they may not be very useful. Sim-
ilarly, a rarely occurring timing related bug in a distributed
system may be very difficult to diagnose by only examining
the software source code and documents.

Dynamic analysis, on the other hand, is a runtime anal-
ysis solution emphasizing dynamic data (instead of static
data) gathered from program execution. Dynamic analysis
records and examines the program’s actions, logs, messages,
trace events, while it is being executed. Dynamic analysis is
based on the program runtime behavior. This information is
usually obtained by instrumenting the program’s binary or
source code and putting hooks at different places (e.g., entry
and exit points of each function) [1, 4]. However, there are
other ways to dynamic analysis as well, for instance, VTune
[5] and HPCToolkit [6] are two examples of sampling-based
performance tools that add no instrumentation.

The use of dynamic analysis (through execution traces) to
study system behavior is increasing among system adminis-
trators and analysts [7, 8, 9]. Tracing can produce precise
and comprehensive information from various system levels,
from (kernel) system calls [10, 11, 12] to high-level architec-
tural levels [13], leading to the detection of more faults, (per-
formance) problems, bugs and malwares than static analysis
[14].

Although dynamic analysis is a useful method to analyze the
runtime behavior of systems, this brings some formidable
challenges. The first challenge is the size of trace logs. They
can quickly become very large and make analysis difficult
[15]. Tracing a software module or an operating system
may generate very large trace logs (thousands of megabytes),
even when run for only a few seconds. The second challenge
is the low-level and system-dependent specificity of the trace
data. Their comprehension thus requires a deep knowledge
of the domain and system related tools [10].

In the literature, there are many techniques to cope with
these problems: to reduce the trace size [12, 2], compress
trace data [16, 4], decrease its complexity [17], filter out
the useless and unwanted information [11] and generate high



level generic information [18]. Visualization is another mech-
anism that can be used in combination with those techniques
to reduce the complexity of the data, to facilitate analysis
and thus to help for software understanding, debugging and
profiling, performance analysis, attack detection, and high-
lighting misbehavior while associating it to specific software
sub-modules (or source code) [19, 20, 21].

Even using trace abstraction and visualization techniques,
the resulting information may still be large, and its analy-
sis complex and difficult. An efficient technique to alleviate
this problem is to organize and display information at dif-
ferent levels of detail and enable some hierarchical analysis
and navigation mechanism to easily explore and investigate
the data [22, 23]. This way, multi-scale (multi-level) vi-
sualization, can enable a top-down/bottom-up analysis by
displaying an overview of the data first, and letting users go
back and forth, as well as up and down (focus and zoom)
in any area of interest, to dig deeper and get more detailed
information [24, 25].

Of the many different trace visualization tools and tech-
niques discussed in the literature [26, 20, 27, 3] and among
those few interesting surveys on trace abstraction and vi-
sualization techniques [19, 15, 1], only a small fraction dis-
cusses and supports multi-level visualization. This moti-
vated the current survey, to discuss and summarize the tech-
niques used in multi-level visualization tools and interfaces
(whether used for tracing, spatial tools, online maps, etc.)
and the way to adapt those solutions to execution trace anal-
ysis tools.

Indeed, constructing an interactive scalable multi-level vi-
sualization tool, capable of analyzing and visualizing large
traces and facilitating their comprehension, is a difficult and
challenging task. It needs to address several issues. How to
generate a hierarchy of abstract trace events? How to orga-
nize them in a hierarchical manner, helping to understand
the underlying system? How to visualize and relate these
events in various levels with support of appropriate LOD
(Level of Details) techniques?

Although the techniques discussed in this paper are generic
and applicable to any trace data, our focus will be more on
the area of operating system (kernel) trace data and anal-
ysis, when this distinction is relevant. Kernel traces have
some specific features that differentiate them from appli-
cation (user) level traces. For example, there is mostly a
discontinuity between the execution of events for a process,
because of preemption and CPU scheduling policies. An-
other example is, unlike other (e.g., user-level) tracers that
monitor only one specific module or process, kernel traces
usually contain events from different modules (disk blocks,
memory, file system, processes, interrupts, etc.), which may
complicate the analysis.

The paper is structured as following. First, we discuss the
techniques to generate multiple levels of trace events from
the original logs, focusing on kernel trace data. Secondly,
we present a taxonomy for multi-scale visualization methods
targeting hierarchical data, looking at the existing trace vi-
sualization tools. Then, we study various solutions to model
the hierarchical data. Finally, this paper will conclude with

a summary and outline for future work. Figure 1 depicts the
topics investigated in this paper.

2. MULTI-LEVEL TRACE ABSTRACTION
TECHNIQUES

As mentioned earlier, execution traces can be used to an-
alyze system runtime data to understand its behavior and
detect system bottlenecks, problems and misbehaviors [7, 8].
However, trace files can grow quickly to a huge size which
makes the analysis difficult and cause a scalability problem.
Therefore, special techniques are required to reduce the trace
size and its complexity, and extract meaningful and useful
information from original trace logs.

In the literature, various trace abstraction techniques are
surveyed, including two recent systematic surveys [1, 2].
Here, we present a different taxonomy of trace abstraction
techniques, based on their possible usages in a multi-level
visualization tool.

We categorize trace abstraction techniques into four major
categories: 1- Content-based (data-based) abstraction tech-
niques, those based on the content of events. 2- Metric-based
abstraction, the techniques to aggregate the trace data based
on some predefined metrics and measures. 3- Visual abstrac-
tion, the techniques mostly used in the visualization steps.
4- Resource abstraction techniques, those techniques about
extracting and organizing the resources involved within trace
data.

2.1 Content-based (data-based) Abstraction
Using the events content to abstract out the trace data is
called content-based abstraction or data-based abstraction.
Data-based abstraction can be used to reduce the trace size
and its complexity, generalize the data representation, group
similar or related events to generate larger compound events,
and aggregate traces based on some (predefined) metrics. In
the following, we study all of these content-based abstraction
techniques.

Trace Size Reduction
In the literature, various techniques have been developed to
deal with the trace size problem: selective tracing, sampling,
filtering, compression, generalization and aggregation.

Selective tracing [9] refers to trace only some selected mod-
ules/processes of the system, or gather only the interesting
behavior, instead of the whole system. Abstract execution
[28] is one of the selective tracing techniques. It stores only
a small set of execution trace events for later analysis. Once
needed, for any area of interests, this technique re-generates
a full trace data by re-executing the selected program mod-
ule. Shimba [3], a trace visualization tool, also uses a selec-
tive tracing method. LTTng Linux kernel tracer [29] can be
configured to trace only the requested modules, say network,
file system, etc, instead of tracing the whole operating sys-
tem, resulting in a reduced amount of collected trace data
which is useful and important for an efficient postmortem
analysis.

Instead of processing all events, trace sampling selects and
inspects only a variety of events from the trace data. Trace



Figure 1: Taxonomy of topics discussed in this paper.

sampling is used in [30], [31], [32] and [33] and also in AVID
visualization tool [26]. STAT (Stack Trace Analysis Tool)
[34] is a scalable debugging tool that targets very large scien-
tific applications. STAT processes the stack traces gathered
during a sampling time to build a call graph prefix tree to
extract and group common behavior classes within the pro-
gram runtime space. In addition to sampling at the time of
postmortem analysis, trace size reduction can be also done
via sampling events at the time of measurement [35]. Since
sampling filters trace events in an arbitrary manner, it may
lose information and not preserve the actual system behav-
ior.

Trace filtering is the removal of all redundant and unnec-
essary events from the trace events, highlighting the events
that have some pre-specified importance. Filtering can be
done based on various criteria such as event timestamp,
event type, event arguments, function name, process name,
class or package name, and also the priority and importance
of events [36, 37]. For example, an analyst may keep only
the events related to socket and network operations and fil-
ter the rest out when he/she works only on the network
behavior analysis. Fadel et al. [11] use filtering in the con-
text of kernel traces to remove memory management events
(out of analysis scope events) and page faults (noises) from
the original data.

Trace compression is another technique used to reduce the
trace size. It works by storing the trace events in a compact
form by finding similarities and removing redundancies be-
tween them [4]. Compression has two common forms: lossy
compression that may discard some parts of the source data
(e.g., used in video and audio compression) and lossless com-
pression that retains the exact source data (e.g., used in ZIP
file format). Kaplan et al. [16] studied both lossy and loss-
less compression techniques for memory reference traces and
proposed two methods to reduce the trace size by discard-

ing useless information [16]. The drawback is that the com-
pression technique cannot be used much for trace analysis
purposes. Indeed, compression is more a storage reduction
technique rather than an analysis simplification technique.
Moreover, since trace compression is usually applied after
generating trace events and storing them in memory or disk,
it is not applicable for online trace analysis, when there is
no real storage for all live trace events.

Event Generalization
Being dependent on a specific version of the operating sys-
tem or particular version of tracer tool can be a weakness
for the trace analysis tools. Generalization is one solution
to this problem: the process of extracting common features
from two or more events, and combining them into a gen-
eralized event [38]. Generalization can be used to convert
the system related events into more generalized events. Es-
pecially in Linux, many system calls may have overlapping
functionality. For example, the read, readv and pread64
system calls in Linux may be used to read a file. However,
from a higher level perspective, all of them can be seen as
a single read operation. Another example is generalizing
all file open/read/write/close events to a general “file oper-
ation” event in the higher levels [10]. PAPI interface [39]
abstracts hardware specific events to a set of general and
derived events (such as ratios of native and preset events
and integration of events with system parameters). Using
this interface users can dynamically specify the new derived
events to be used in postmortem analysis and modelling.

Event Grouping and Aggregation
Trace aggregation is one of the critical steps for enabling
multi-scale analysis of trace events, because it can provide a
high-level model of a program execution and ease its compre-
hension and debugging [40]. In the literature, it is a broadly
used method to reduce the size and complexity of the traces,
and generate several levels of high level events [41, 11, 40,



42, 12, 18]. In essence, trace aggregation integrates sets of
related events, participating in an operation, to form a set of
compound and larger events, using pattern matching, pat-
tern mining, pattern recognition and other techniques [42].

For instance, Fadel et al. [11] used pattern matching to
aggregate kernel traces gathered by the LTTng Linux ker-
nel tracer [29]. Since trace data usually contain entry and
exit events (for function calls, system calls, or interrupts),
it is then possible to find and match these events and group
them to make aggregated events, using pattern matching
techniques. For example, they form a “file read” event by
grouping the “read system call” entry and exit events [11],
and some possible file system events between these two (Fig-
ure 2). A similar technique is exploited by [14] to group
function calls into logically related sets, but in user-space
level.

By using a set of successive aggregation functions, it is pos-
sible to create a hierarchy of abstract events, in which the
highest level reveals more general behaviors, whereas the
lowest level reveals more detailed information. The highest
level can be built in a way that represents an overview of the
whole trace. To generate such high level synthetic events,
it is required to develop efficient tools and methods to read
trace events, look for the sequences of similar and related
events, group them, and generate high level expressive syn-
thetic events [42, 43].

Figure 2: Recovering a “file read” event from trace
events.

Source [11]

Wally et al. [12] used trace grouping and aggregation tech-
niques to detect system faults and anomalies from kernel
traces. However, their focus was on creating a language for
describing the aggregation patterns (i.e., attack scenarios).
Both proposals [11, 12], although useful for many examples
of trace aggregation and for applications to the fault identi-
fication field, do not offer the needed scalability to meet the
demands of large trace sizes. Since they use disjoint pat-
terns for aggregating the events, for large traces and for a
large number of patterns, it will be a time-consuming task
to take care all of patterns separately. Further optimization
work is required in order to support large trace sizes and a
more efficient pattern processing engine [18].

Matni et al. [17] used an automata-based approach to de-
tect faults like “escaping a chroot jail” and “SYN flood at-
tacks”. They used a state machine language to describe the
attack patterns. They initially defined their patterns in the
SM language and using the SMC compiler [44]. They were
able to compile and convert the outlined patterns to C lan-
guage. The problem with their work is that the analyzer is
not optimized and does not consider common information
sharing between patterns. Since their patterns mostly ex-
amine events belonging to a small set of system processes
and resources, it would be possible to share internal states
between different but related patterns. Without common
shared states, patterns simply attempt to recreate and re-
compute those shared states and information, leading to re-
duced overall performance. Also, since preemptive schedul-
ing in the operating system mixes events from different pro-
cesses, the aforementioned solutions cannot be used directly
to detect complex patterns, because of the time multiplexing
brought by the scheduler. It needs to first split the events
sequences for the execution of each process and then apply
those pattern matching and fault identification techniques.

These problems were addressed in our previous work [10,
18]. We proposed a stateful synthetic event generator in the
context of operating system kernel traces. An efficient trace
aggregation method is designed for kernel traces consider-
ing all kernel specific features (extracting execution path,
considering scheduling events, etc). The work shows that
sharing the common information simplifies the patterns, re-
duces the storage space required to retain and manage the
patterns, increases the overall computation efficiency, and
finally reduces the complexity of the trace analysis (Figure
3).

Figure 3: Trace aggregation time comparisons for
stateful and stateless approaches [18].

Pattern mining techniques are also used to aggregate traces
and extract high level information from trace logs [45]. It
is used to find the patterns (e.g., system problems) that are
frequently occurring in the system. Several pattern mining
techniques have been studied in [46]. Han et al. [47] clas-
sified the pattern mining techniques into correlation min-
ing (discovery of correlation relationships), structured pat-
tern mining (similarity indexing of structured data), sequen-
tial pattern mining (mining of subsequent or frequently oc-
curring ordered events), frequent pattern-based clustering
(computing frequently occurring patterns in any subsets of
high-dimensional data), and associative classification (dis-



covery of different association between frequent patterns);
they described several applications for each category. They
reported that frequent pattern mining can lead to the dis-
covery of interesting associations between various items, and
can be used to capture the underlying semantics in input
data.

Pattern mining may also be used to find system bugs and
problems through mining live operating system trace logs as
applied by Xu et al. [8] and LaRosa et al. [7]. LaRosa et al.
[7] developed a kernel trace mining framework to detect ex-
cessive inter-process communication from kernel traces gath-
ered by LTT and dTrace kernel tracers. They used a fre-
quent itemset mining algorithm by dividing up the kernel
trace events into various window slices to find maximal fre-
quent itemsets. Using this technique, they were able to de-
tect the excessive inter-process interaction patterns affecting
the system’s overall performance [7]. Similarly, they also
could find the denial of service attacks by finding processes
which use more system resources, and have more impact on
the system performance. However, their solution cannot be
used to find (critical bug) patterns that occur infrequently
in the input trace.

Although pattern-based approaches are used widely in the
literature, they face some challenges and have some limita-
tions, especially for use in the kernel trace context. Effi-
cient evaluation of patterns has been studied in several ex-
periments [48, 49]. Productive evaluation of the specified
patterns is closely related to multiple-query optimization in
database systems [49] that identifies common joins or filters
between different queries. These studies are based on iden-
tification of sub-queries that can be shared between distinct
concurrent queries to improve the computational efficiency.
The idea of sharing the joint information and states has also
been deployed by Agrawal et al. [48]. They proposed an
automaton model titled ”NFAb” for processing the event
streams. They use the concept of sharing execution states
and storage space, among all the possible concurrent match-
ing processes, to gain efficiency. This technique is also used
in the context of kernel trace data to share the storage and
computation between different concurrent patterns [18].

2.2 Metric-based Abstraction
Besides the grouping of trace events and generation of com-
pound events, used to reduce the trace size and its complex-
ity, another method is to extract some measures and aggre-
gated values from trace events, based on some predefined
metrics. These measures (e.g., CPU load, IO throughput,
failed and successful network connections, number of attack
attempts, etc.) may present an overview of the trace and
can be used to get an insight into what is really happening
in the (particular portion of) trace, in order to find possible
underlying problems.

Bligh et al. [50], for instance, show how to use the statis-
tics of system parameters to dig into the system behavior
and find real problems. They use kernel traces to debug
and discover intermittent system bugs like inefficient cache
utilization and poor latency problems. Trace statistics, to
analyze and find system problems, have been also used in [8,
51, 52]. Xu et al. [8] believe that system level performance
indicators can denote the high-level application problems.

Cohen et al. [52] established a large number of metrics such
as CPU utilization, I/O request, average response times and
application layer metrics. They then related these metrics
to the problematic intervals (e.g., periods with a high av-
erage response time) to find a list of metrics that are good
indicators for these problems. These relations can be used
to describe each problem type in terms of atypical values
for a set of metrics [51]. They actually show how to use
statistics of system metrics to diagnose system problems;
However, they do not consider scalability issues, where the
traces are too large, and storing and retrieving statistics is
a key challenge.

Ezzati et al. [53] proposed a framework to extract the impor-
tant system statistics by aggregating kernel traces events.
The following are examples of statistics that can be ex-
tracted from a kernel trace [53, 54]:

• CPU used by each process, proportion of busy or idle
state of a process.

• Number of bytes read or written for each/all file and
network operation(s), number of different accesses to
a file.

• Number of fork operations done by each process, which
application/user/process uses more resources.

• The number (or area) of disk is mostly used, the la-
tency of disk operations, and the distribution of seek
distances.

• The network IO throughput, the number of failed con-
nections.

• The memory usage of a process, the number of (pro-
portion of) memory pages are (mostly) used.

To perform metric-based abstraction, a pattern of events
is registered for each metric (i.e., a mapping table). Each
pattern contains a set of events and an aggregation func-
tion identifying how to compute the metric values from the
matching trace events. For example, the pattern of a metric
like process IO throughput includes all corresponding file
read and write events as well as a SUM function (as the
aggregation function). The trace abstraction module uses
these patterns to inspect the events and aggregate them for
all predefined metrics.

Most visualization tools support metric-based abstraction,
Vampir [24], Jumpshot[27], TuningFork [21], etc. In these
tools, the statistics gathered by metric-based abstraction are
displayed as histograms or counts (or average, min, max,
etc.), and usually rendered as the highest level of the data
hierarchy to show an overview of the underling trace.

2.3 Visual Abstraction
Data abstraction, as explained in the previous section,
mostly deals with the data content and does not usually have
a sense of the visualization environment. When displaying a
large trace set, it may not be possible to visualize all abstract
trace events together, because of the limited screen display
area. It is sometimes required to perform separately a visual



abstraction of trace data, to aggregate the data and display a
small set of events, enabling a simpler and more usable view.
Applying different types of visual abstraction, like filtering
some unimportant items, grouping and aggregating related
events (related rectangles), displacement, simplification, ex-
aggeration, or reducing or enlarging the size and shape of
events, may reduce the visual complexity of the trace, in-
crease its readability and clarity, and sometime improve the
performance of graphical rendering of the trace items [55].

While data abstraction is based on analyzing and manip-
ulating the trace content, visual abstraction is more about
manipulating the trace representation (and not the data it-
self) [23]. Many visualization tools use colors and shapes as
the elementary elements to represent the trace events. Trace
Compass and LTTV [56] use colors to differentiate the var-
ious states (waiting, system call, user space, etc.) extracted
from trace events. Rectangles are usually used to represent
the abstract events and states. In the same way, arrows are
used to represent the communication and message passing
between different modules (processes). In the LTTV and
Trace Compass visualization tools [56], for example, when
there is more than one trace event in an area smaller than
a pixel, a black dot is shown instead of those events.

Annotation is another way to visually abstract the trace
items. Annotation can be used to describe a group of events,
to display user comments about a trace section, or the con-
tent of a message passed between different resources [57].
Labels, as a specific type of annotation, is also used in dif-
ferent visualization tools. Ovation [58], the Google chrome
tracing tool [59] and Trace Compass [56] use labels to repre-
sent function names, system calls, return values, etc. Labels
can be also filtered, shortened, enlarged or aggregated when
there is more or less display area available [43].

2.4 Resource Abstraction
Trace events are usually multi-dimensional in nature and in-
clude interactions of different resources (dimensions). There
may be a large number of resources (processes, files, CPUs,
memory pages, ...) about which a tracer gathers informa-
tion. For instance, a “file open” trace event may contain
information from the running process, the file that has been
opened, the current scheduled CPU for this operation and
the return value (i.e., file descriptor (fd) of the file). There-
fore, the abstraction of the resources, and their represen-
tation, can also be important to reduce the complexity of
the trace display. Grouping resources [25, 41], filtering of
uninteresting resources [60], or hierarchical organization of
resources [61, 53, 62] are the related techniques used in the
reviewed literature.

Montplaisir et al. [61] exploited a tree representation (called
attribute tree) to organize resources extracted from trace
events. One important feature of their work is extracting
the resources dynamically from traces. It may also be pos-
sible to statically define and organize all existing system re-
sources (all classes, all packages, all processes, all files, etc.).
However, since the trace data may contain events and in-
formation for only a small number of resources, defining the
resources statically and in advance will be a waste of time
and display space (Figure 4).

Figure 4: Hierarchical abstraction of resources ex-
tracted from trace events.

Another representation of resources extracted from trace
events is presented in [53, 62]. In their work, a hierarchy
is defined for each resource type (also called domain), e.g.,
one hierarchy for processes, one for files, etc., and the metrics
are defined between these domains. They present solutions
for constructing cubes of trace data to be used later in trace
OLAP (OnLine Analytical Processing) analysis.

Schnorr et al. [25] group the threads based on their asso-
ciated processes and then by machine name, cluster and so
on. Automatic clustering of system resources is performed
in [41]. Two approaches were used: automatic clustering of
processes based on their runtime inter-process communica-
tion intensity, and combining the inter-process communica-
tion information and the information of processes extracted
from static source code [41].

2.5 Applications of Trace Abstraction Tech-
niques

As explained, trace abstraction techniques are used to re-
duce the size and complexity of trace logs to make their
analysis simple and more straightforward. One direct appli-
cation, for trace reduction and simplification, is system be-
havior understanding and comprehension [1]. Other applica-
tions are security problems detection (e.g., network attacks),
system problems investigation (e.g., performance degrada-
tion), comparisons of system execution, monitoring, etc.

Beaucamps et al. [63] propose a method for malware de-
tection, using abstraction of program traces. They detect
malware by comparing the aggregated events to a reference
set of malicious behaviors. Uppuluri [38] uses a pattern
matching approach to diagnose system problems. In [64],
[65] and [66] similar techniques are also used to detect sys-
tem problems and attacks. They mainly differ in describ-
ing and representing the patterns. STATL [64] models use
signatures in the form of state machines, while in [65] sig-
natures are expressed as colored petri nets (CPNs), and in
MuSigs [66] directed acyclic graphs (DCA) are used to rep-
resent the security specifications. Chun Yuan et al. [67]
provides an abstraction of system trace events by means of
statistical learning technique and classifying system call se-
quences to automatic identification of root-causes of known
problems (such as page loading error in Internet Explorer
web browser).

Trace abstraction can also be used to detect system and



network problems, and attacks, by looking for fault and at-
tack patterns and scenarios in execution traces. Using this
method, users can discover problems like inefficient CPU
scheduling, network attack attempts, slow disk accesses, lock
contention, inappropriate latency, non-optimal memory and
cache utilization, and uncontrolled sensitive file modifica-
tions [50, 17, 8]. The techniques used in pattern-based fault
identification tools resemble the attack discovery techniques
in intrusion detection systems (IDS). Intrusion detection sys-
tems analyze network packets and look at their payload to
find and detect attack signatures. Similar to IDS systems,
trace analysis tools, upon detecting such a problematic pat-
tern, may generate an alarm or even trigger an automatic
response (e.g., killing a process, rebooting the system, etc.)
[68].

One of the other techniques to reduce trace complexity and
improve understanding is visualization. A proper visual-
ization, specially multi-scale visualization, can significantly
help to alleviate big data analysis problems, as investigated
in the next section.

3. MULTI-LEVEL TRACE VISUALIZA-
TION

After creating a hierarchy of events, using various abstrac-
tion techniques, it is important to have a proper visual-
ization model to store and display the hierarchy of events,
including a proper navigation and exploration mechanism.
Without such a visualization model, displaying large traces
may become overly complex, leading to information over-
load [69]. In this section, we focus on multi-level visual-
ization techniques and tools, and investigate the different
techniques for displaying and visually organizing the hierar-
chical trace data.

3.1 Hierarchy Visualization Techniques
In the literature, there are many techniques to visualize large
hierarchical structures. We categorized them into four main
groups: space filling, context+focus, multiple levels, and
multiple views. In the following, we explain each technique
in more detail.

Space Filling Technique
Space filling is a visualization technique used for hierarchi-
cal structures which uses almost all available screen space.
In this technique, intermediate and leaf nodes are both dis-
played as rectangles (or polygons), for which sizes are com-
puted based on their importance or property values. One
space filling technique is the radial method [70], in which
items are drawn radially, the higher levels at the center of
the display and lower layers away from the center. Treemap
[71] is another popular space filling technique. It allocates
the rectangle space of the visible screen to the root node and
then splits it among its children based on their properties. In
this technique, the rectangle corresponding to each node is
labeled with an attribute of that node (size, resource usage,
importance, etc). The technique was first used to visualize
the directory structure of the file system of a 80MB hard
disk [71]. It was later also used to visualize the trace data in
Triva visualization tools [25], as well as in Gammatella [72]
and LogView [73]. Figure 5 shows the visualization of one
million items using the Treemap technique.

Figure 5: Visualization of one million items using
treemap.

(source: wikipedia.org)

The main focus of space filling techniques is on the leaf
nodes, whereas the non-leaf nodes are not clearly shown.
Thus, it can be a candidate for the cases where the leaf-level
nodes are of interest and important for analysis (e.g., for
presenting unusual patterns at the leaf level). Furthermore,
users may loose the focus of the whole system, since it is
more difficult to focus on one part, and at the same time
keep a global overview. Another problem with this tech-
nique is that the small areas (rectangles or polygons) may
be difficult to distinguish.

Focus+Context Technique
One problem with the space-filling techniques is that users
may loose the position of the visible items, due to the lack
of a global overview. Focus+Context techniques solve this
problem by simultaneously displaying an overview of the
data while also zooming on a small part of the view. In
other words, users can zoom and focus on any part of the
view, while they see the overall context [74]. One example
of this technique is using a magnifier over a text document.
You can zoom on any part of the text and enlarge the con-
tent by moving the magnifier, while retaining an overview
of the data (i.e., the entire page). Tree based visualization
techniques are another example of this method, e.g., in a
tree based window explorer, you can expand a node to see
its content and details, while you see the overview of the
data simultaneously.

Hyperbolic browser/tree, originally introduced by Lamping
et al. [74] exploits a Focus+Context technique. Hyperbolic
browser/tree displays the hierarchical data on the hyperbolic
space rather than Euclidean space and then maps it to the
unit disk, making the entire tree visible at once. In this
tree, the focused node is displayed larger, and the degree of
interest of other nodes is calculated automatically based on
their distances from the selected node. Since the degree of
interest for each node is changing with respect to the focused
node, the cost of tree redrawing leads to speed concerns. The
other problem with this approach is that it cannot display
non-hierarchical relationships. Mizoguchi [75] has used the
Hyperbolic tree and also machine learning techniques to find
the tracks of an intruder in his anomaly detection system.
Figure 6 depicts a view of the Hyperbolic technique.



Figure 6: An example of a hyperbolic browser.
(source: wikipedia.org)

Multiple-levels Technique
Focus+Context techniques are typically used for displaying
and following data sets having clear hierarchies and cate-
gories. These techniques display both the context and focus
within the same screen, but sometimes, when there is more
detailed data for each selected area, it might not be possible
to display both the details and the overview on the same
display at the same time [76]. One solution for this problem
is using various views for displaying the different levels, as
often used in online geographical maps.

Two techniques are usually supported in this method. First,
semantic zooming [23], in which another semantic level of
objects is displayed when changing the zoom level. In a
non-semantic zooming approach, as used in many visualiza-
tion tools, (TuningFork [21], Jumpshot [27], Trace Compass
[56] and Chrome tracing environment [59]), the objects are
displayed in larger size as the available display area becomes
larger.

The multiple-levels technique usually supports (different
types of) linking between the different data layers. To do
so, a direct link is kept for different objects (referring), or
objects are organized in such a way that relationships can
easily be extracted later (matching). Establishing links be-
tween different layers enables multi-scale analysis, because
it makes possible following one data item within other hier-
archy levels.

In the multiple-level techniques, various levels are used to
display the different data resolutions, overview on top, and
details at the bottom. Users typically see a top-level view
and then can zoom and focus on any selected part to get
more details [76]. The difference with the Focus+Context
approach is that here the views appear separately, not si-
multaneously. In other words, more information can be dis-
played in this method, because the whole display is used
to visualize a view, and there will be no wasted space to
show the overview or other data levels. In this method, the
trace data is divided, and visualized in various spatial lay-
ers. When users zoom, the current view becomes hidden
and a completely new view with more detailed data appears
(more details and more labels are shown). Supporting se-
mantic zooming in this method enables showing more/less
information about objects, when users zoom in/out. For ex-

ample, in the highest overview level, only labels of important
objects are shown, while in the lowest level, more labels are
shown (like in Google maps) [43].

There is a special case of this method called overview + de-
tails, used in many visualization tools (Jumpshot [27], Vam-
pir [24], Trace Compass [56], etc.), in which the overview and
detailed views are shown next to each other (Figure 7). The
overview can be the statistics of the important system pa-
rameters or only a simple time navigator. Users can browse
the overview pane and click on interesting parts to see in
another view that section in more details. This method al-
lows a simultaneous display of the views. However, it splits
the screen and limits the available space for each view [76].

Figure 7: Overivew + Detail method (Trace Com-
pass LTTng viewer).

This method shows different data resolutions at different lev-
els and lets the user understand and detect the relationships
between the different data resolutions intuitively. Although
space-usage efficient, and widely used in visualization tools
and applications to display large data sets, this method is
not exploited much in trace visualization tools. It deserves
more consideration, because of its remarkable features.

Multiple Views Technique
One popular visualization technique, widely used in trace vi-
sualization tools, is multiple-views. This technique exploits
a flat visualization technique and shows sequentially the dif-
ferent aspects of the trace in different (coordinated) views
[77].

Using this method, displaying hierarchical data is also pos-
sible. It is often implemented as separate views, in which
each view displays a separate level. A Primary view is used
to show the mainline of the system or an overview of the
execution, and a set of auxiliary views display other aspects
(or levels), such that selecting an item in one view leads to
highlighting corresponding areas in other views [78].

This technique helps users to get a better comprehension
through different views. Many trace visualization tools like
Zinsight [20], TraceVis [57], Vampir [24], LTTV, Trace Com-
pass [56], etc. use coordinated views to display trace ele-
ments. The problem with this technique is that users need
to simultaneously follow various related views to analyze the
system execution, that can be difficult for some users.

The views are usually coordinated. Timestamps of events
or system resources (e.g., a process name) are used to co-
ordinate the views together. For example, when an area is
selected in a statistics histogram, all events whose times-
tamps are in the range of the selected area will be displayed
or highlighted in the events view. Also, when a process is
selected in the control flow diagram, all events belonging to
this process will be shown in the events view.



In the same way, to show hierarchical relationships between
events at different levels, one possible solution is using im-
plicit links between elements at different levels. For example,
when an item is selected in one level (view), related events
in another level (view) can be highlighted. Trace Visualiza-
tion tools typically use event timestamps to link the related
data together in the hierarchy. When a high level event is
selected in one view, all related events in other views with
the same timestamp are highlighted and shown.

Figure 8: Context-preserving visualization of re-
lated items and links.

Data Correspondence
One important issue in multi-level visualization is deciding
about managing and representing the correspondence be-
tween data. Techniques are required to extract, organize and
visualize the links between related data at different levels.
Supporting data correspondence and multi-level navigation
are important features of visualization tools to provide. For
instance, when users want to follow and dig into an interest-
ing high level entity (e.g., an event displaying a performance
problem or a network attack), these features can be used.

In the focus+context and other tree-based methods, the
relations between entities at different levels are normally
displayed using a tree-based view (expand/collapse). Such
relations are also fairly explicit in space filling techniques.
However, in multiple-level views, the detection of relations
between data at different levels is less explicit, left to the
user intuition. In this technique, it is important to present
data in such a way that users can seamlessly navigate and
understand the relationships between relevant data.

To link events in the multiple-view technique, as explained
earlier, two general methods may be used: 1- structure-
based linking 2- content-based linking. In the former, the
events bounding information (e.g., timestamps) or the sys-
tem resources (e.g., process, file, etc.) are used to relate
events together. In the latter, data semantics are used to link
events from different layers (views), e.g., selecting a “HTTP
connection” abstract event in a view results in displaying all
related events (e.g., socket create, socket call, socket send,
socket receive, socket close and so on) in another detailed
view.

The details of the links between events, regardless of their
type (e.g., structure or content based), can be extracted stat-
ically (in the process of aggregation), or dynamically using
matching techniques. In the former, event links are gener-

ated in advance and stored in a type of index to be used
later. In the latter, no linking information is stored in ad-
vance, the related events are instead matched dynamically
in the visualization phase.

Matching is commonly used in spatial applications using
a geometric matching algorithm [79]. This algorithm as-
sumes that some attributes of the related objects should be
matched. In this technique, semantic attributes, metrics, ge-
ometrical and structural information from objects are used,
for matching similar objects at different scales [80].

To display the links, besides highlighting the related events,
it is sometimes useful to also show lines and arrows between
relevant views and items, as investigated by Collins et al.
[81], Waldner et al. [82] and Steinberger et al. [83].

Collins and Carpendale [81] introduced VisLink, a visual-
ization environment that reorganizes various 2D elements
and displays links between them. VisLink is generalized for
different visualization techniques like Treemap, Hyperbolic,
etc. In VisLink, each graph is represented on a separate
plane, and the relationships between these planes are dis-
played using edge propagation from one visualization to an-
other. The same approach is also used in [84] to effectively
present all relevant gene expressions and the relations be-
tween them and between multiple pathways. Waldner et al.
[82] extend visual links to graphically present links between
related pieces of items across desktop application windows.
Figure 9 shows an example of the VizLink visualization.

Figure 9: Visualization of related items and the links
between them.

Steinberger et al. [83] believe that using this links visual-
ization technique may lead to hiding valuable information.
For solving this problem, they introduced context-preserving
visual links [83]. In this approach, the items and the con-
necting lines are highlighted, helping to find and discover
the related items, but special care is taken to avoid hid-
ing valuable content. Indeed, the links are routed along the
window borders to avoid obstructing the view of items. This
technique is attractive and has clear advantages over tradi-
tional visual links. However, it may lead to possible visual
interferences. Moreover, the issue of dealing with scalable
data sets was not addressed in their work and is likely prob-
lematic. In the case of particularly large traces, visualizing
the links between events may cost too much, and should be
studied carefully. Figure 8 depicts context preserving links



visualization.

In this section, different ways to visualize hierarchical data,
popular in trace visualization tools, were investigated. In
the next section, we study some existing trace visualization
tools, explain the abstraction techniques used, and investi-
gate their support for multi-level visualization.

3.2 Visualization Tools
By using an appropriate multi-level visual representation,
users can view an overview of the trace, then focus and
zoom into areas of interest to get more details. Several stud-
ies have been conducted in the area of scalable visualization
[15, 20, 85, 22]. In the following, we study various trace
visualization tools, from operating system level to applica-
tion level tracing, and for each we review the abstraction
method used, and discuss if they support multi-level visual-
ization and the way they handle visualization scalability.

Vampir [24] is a trace analysis tool used for performance
analysis and visualization of MPI (Message Passing Inter-
face) programs. Vampir uses the multiple views technique
and contains different synchronized views such as global
timeline view, process timeline view and communication
statistics view. Global timeline is the default view that gets
activated automatically when opening a trace. It displays
a fine-grained view of the execution behavior. Analysts can
then select any individual section of the timeline and zoom
to get more detailed information for that part. In addi-
tion, users can view statistics (metric based abstraction) for
the displayed time interval [86]. Hierarchical visualization is
supported using a multi-level space-time (timeline) diagram.
In this view, the highest level shows the statistics and there
is the possibility of focusing and zooming, where users can
explore data for different levels of resources such as cluster,
machine, or process. However, the metrics used for repre-
senting the system behavior are too low level, and analysts
may therefore not understand easily what improvements are
possible. A summary of this tool (in conjunction with other
tools) is displayed in Table 1.

Similar to Vampir, Jumpshot [27] is a visualization tool for
understanding the performance of parallel programs. Jump-
shot first displays an overview of the whole trace, and, once
the user selects an interval, it displays a detailed view of
that interval. The length of time intervals is fixed at each
level, and is selected statically or dynamically. Jumpshot
uses the SLOG2 trace format [87], a hierarchical file format
to handle a large number of events and states in a scalable
way, even for large-scale applications. Jumpshot abstracts
out the trace events to generate ready-to-display hierarchi-
cal preview drawable objects: preview state, preview arrow
and preview event. At each detail level, it uses a separate
pack degree that shows how many underlying events are used
to create the preview objects of the current level. Users can
zoom-in and narrow the view to see large intervals and states
that were too small in the previous views, but large enough
for the current view. Jumpshot supports also resource ab-
straction, displaying an aggregated set of processes in a spe-
cial view called“mountain range”. The link between views is
established based on timestamps. There is no other mecha-
nism to directly link the different views and their associated
events.

The high-performance computing (HPC) field has developed
a rich set of tools and techniques for trace collection, anal-
ysis, and visualization. Hardware performance counters,
memory traffic, network traffic, call path samples, are some
of the data collected by tracing tools in the HPC area. Ex-
cept Vampir [24] and Jumpshot [27], there are other great
HPC performance analysis tools such as Allinea’s map [88],
Intel’s VTune [5], HPCToolkit’s hpctraceviewer [6], TAU
[89], and Scalasca [90]. Each of these tools has rich trace
collection mechanisms and visualization interfaces. For ex-
ample, hpctraceviewer [6] organizes its sampled traces in 3D,
where the x-axis is the time, y-axis is is resources, and the
depth-axis is the call stack depth. Scalasca [90] organizes its
performance data in a CUBE format.

Significant efforts are made in visualizing HPC performance
data. Isaacs et al. organize trace data in a logical time or-
dering for the ease of understanding performance anomalies
[91]. Isaacs et al. [92] provide a rich survey of visualization
tools for performance analysis. Landge et al. [93] devised 2D
and 3D techniques to visualize the network traffic in mas-
sively parallel simulations. Bhatele et al. [94] devised a novel
scheme to map performance data from a hardware topol-
ogy to an application domain. They use intuitive colouring
scheme and weighted arrows to indicate network bottleneck
in a tree topology.

AVID (Architecture Visualization of Dynamics in Java Sys-
tem) [26] is an Ecplise based offline visualization tool to sum-
marize and visualize the object-oriented system’s execution
at the architectural level. The diagrams generated by AVID
demonstrate the system execution by visualizing the objects
and the interactions between them. The system execution
is represented by animating the sequences of cells. Each cell
denotes the aggregated summary information of the system
execution up to that point. A trace sampling method is
used to select only a portion of the trace data related to a
specific analysis scenario, instead of the whole trace. Even
using a sampling method, AVID has scalability issues, and
scenarios dealing with large traces cannot be efficiently visu-
alized. As mentioned, AVID can be used to understand the
system behavior at the architecture level, but it needs the
architecture model of the system to be available. This may
not always be feasible for all systems. Moreover, it needs a
high level model, and the mapping between classes and the
architectural entities, to be manually defined by the analyst.
However, the analyst is not expected to be familiar with the
system architecture [15].

Shimba [3] integrates both static and dynamic information
to analyze the behavior of manually selected artifacts of Java
applications. Its purpose is not to display a general overview
of the system. Using reverse engineering, the static informa-
tion including various software artifacts (classes, methods,
variables...) are extracted and displayed. Users may then
select any interesting component to be traced by Shimba.
The resulting trace extracts the interactions between se-
lected components and visualizes them using UML sequence
diagrams. Shimba uses several abstraction techniques to
cope with scalability problems. It generates several levels
of abstraction from both static and dynamic information.
An example of the former is grouping related software com-
ponents to construct higher level entities. An example of



the later is abstracting out the dynamic information, such
as sequence diagrams, to higher level diagrams. A pattern
matching technique is used to generalize the sequence dia-
grams [3]. Unlike other tools that use system-level tracing
and then reduce the data, Shimba uses component-level trac-
ing, resulting in a small trace data size. It relies on users
to select the component that implements a specific feature.
However, this is not always possible in a complex system.
One problem with this tool is that diagrams are sometimes
very large, and thus harder to understand.

Jinsight [95], is an Eclipse based tool for visualization and
performance analysis of Java programs. It provides several
dynamic views depicting object populations, method calls,
thread activities and memory usage. Using an automatic
pattern recognition technique, Jinsight can detect repeated
behavior patterns from trace data. It uses these patterns
to produce an abstract view of the program execution. Jin-
sight uses different views to illustrate different aspects of
the investigated software behavior. Jinsight supports infor-
mation filtering, enabling analysts to filter out uninteresting
behaviors. De Pauw et al. [95] showed that the tool was suc-
cessful in detecting various problems, such as memory leaks
in industrial applications. However, it does not scale well to
large traces. Jinsight supports trace aggregation over time
in some views.

Ovation [58] is another tool that uses a tree based view called
“execution patterns” to visualize execution traces. Similar
to Jinsight, it uses automatic pattern recognition to extract
and identify patterns of repeated executions. The execution
pattern view displays multiple levels of data to users: a high
level view first and more details on demand. Ovation firstly
shows a generalized view of the system behavior using exe-
cution patterns. It supports drill-down, roll-up, zoom and
pan operations. Users can zoom and focus on any area of
interest to see and find more details in an enlarged view.
De Pauw et al. [58] reported that Ovation has been used
successfully to detect unexpected execution patterns and to
improve performance of large systems. However, Ovation
reveals relatively detailed low level (i.e. method-level) infor-
mation about the application execution, and assumes that
the analyst has enough knowledge of the system to query
this information. Furthermore, it works better for single
program comprehension, rather than general multi-module
systems (like operating system).

Zinsight introduced by De Pauw et al. [20], is a visualization
tool that facilitates system comprehension and performance
problems detection. It is used to analyze special mainframe
software and hardware by examining operating system level
trace events. Zinsight provides facilities for creating high
level abstract views from the low level execution traces. It
uses pattern recognition techniques to discover and extract
execution flow patterns from raw events. It supports dif-
ferent coordinated views like event flow view, sequence con-
text view, statistics view. These linked views help analysts
to see the system execution at a higher level of abstraction,
and make them able to navigate through different levels. Al-
though Zinsight supports trace abstraction and linked views,
it has scalability problems and is not able to visualize traces
unless they completely fit in main memory [96].

TuningFork [21] was introduced to analyze and visualize
traces gathered from the execution of very large realtime
systems. They vertically integrate data from multiple levels
of abstractions, from hardware and operating system lev-
els to the application level, in order to analyze the system.
TuningFork also stores coarse-grained summaries of data,
enabling navigation across different time scales, from hours
to milliseconds, and exploration in multiple levels of granu-
larity.

Tracevis [57] is used to visualize Java programs. It uses mul-
tiple views to display different aspects of program execution,
including timeline and dynamic call graph. Tracevis sup-
ports zooming in any selected area to display detailed trace
data. Tracevis also supports correlating trace instructions
with both the assembly and c code. A multi-level statis-
tics view is supported to show different levels of abstrac-
tion. Tracevis uses metrics based abstraction and displays
the statistics for any selected area by means of annotations.

Triva [25] is another tool that aims to visualize the trace
events of large parallel applications in a hierarchical manner,
supporting visualization scalability. It supports the dynamic
hierarchical organization of trace data and uses the Treemap
space filling technique to visualize trace data. Triva also
supports a hierarchical organization of resources, in which
the threads of a process are grouped together, and processes
are then grouped by machine, cluster and then grid. In
this way, Triva can simultaneously visualize more monitoring
entities than other traditional techniques (e.g., space-time),
in different time granularity (from microseconds to days)
[25].

LTTV (Linux Trace Toolkit Viewer) [56], developed at Dor-
sal lab, is another visualization tool that shows events gener-
ated by the LTTng kernel tracer [29]. It provides a statistics
view, control flow view and event view. The statistics view
presents metrics for the different event types. The control
flow view displays an overall view of the system execution,
aggregated by processes and threads. It supports physical
zooming, scrolling and filtering. However, it does not sup-
port multi-level trace abstraction and linked events. The
same limitation applies to Trace Compass [56] a full-featured
Eclipse based LTTng trace viewer, with more views and
features and supporting different visual abstraction mech-
anisms (e.g., labels, etc).

4. HIERARCHICAL ORGANIZATION OF
TRACE DATA

A single pass over the trace data is normally sufficient to
aggregate the trace and generate high level events to reduce
its size, and possibly detect some problems. In multi-level
trace visualization, users want to access any arbitrary area
of a trace with support for interactive exploration, panning,
searching (e.g., interval search, etc.), focusing and zooming.
A proper hierarchical modeling of the trace data then be-
comes very important for large traces.

Behind the scene of the aforementioned visualization tools
and techniques, are the supporting data structures. The
first step for building a multi-level visualization tool, and
linking events at different levels, is modeling and storing the
generated abstract events in such a way that they can easily
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be fetched and extracted on demand. For efficient manage-
ment of various abstract events, it is required to exploit an
optimized data organization in terms of compactness and
access efficiency. The data organization should enable both
horizontal and vertical analysis in large traces. Horizontal
analysis means going back and forth in the trace, inspecting
events and processing the data for understanding the trace.
Vertical analysis refers to hierarchical and multi-level anal-
ysis. In the following, we review different data structures
used to model and manage trace events, abstract events and
states, and also establish links between them.

Every time users query the system and ask to view the events
and information (e.g., statistics of some system parameters),
at arbitrary places in the trace, it would be possible but
impractically long to reprocess the trace from the starting
point, apply the requested trace analysis (abstraction, re-
duction, etc.) techniques and get the requested information.
The cost of reading and processing the whole trace for each
single query, would indeed be too costly for anything but
the smallest traces. Indeed, the horizontal analysis aims to
support the efficient and scalable analysis of large traces for
arbitrary points (and intervals). Users want to jump effi-
ciently, without any undue or apparent delay, to any place
in the trace to analyze the data to get an insight into the
program behavior at that point. The challenge is similar for
the vertical analysis.

Some projects use periodic snapshots (at checkpoints) to col-
lect and store the intermediate analysis data. This method
splits the input trace into equal (or possibly different) du-
rations (e.g., a checkpoint for each 100K events) and stores
aggregated data at each checkpoint. Later, at interactive
analysis time, instead of reading the whole trace, the viewer
opens and reads the trace from the nearest previous check-
point to the given query point and rerun the patterns for
this small set of events and regenerates the desired informa-
tion. The checkpoint method is used in LTTV (the LTTng
trace viewer) and was used initially in Trace Compass [56].

Related to the checkpoint method, LTTngTop, developed by
Desfossez et al. [54] at Dorsal lab 1, is an efficient command-
line tool to index LTTng kernel traces and extract various
statistics on the system parameters. It is, to a certain ex-
tent, a more detailed and efficient version of the Linux TOP
command. It dynamically displays an ongoing state of the
system, for continuous time periods, using operating system
trace data. LTTngTop aggregates trace events and stores
them in different checkpoints to enable navigating through
the time axis and producing statistics for any time period,
for the current time or any time in the past.

Although the checkpoint method is useful to avoid reading
the whole trace for each query, it has some limitations. For
instance, it always requires accessing the original trace data.
Then, when the original trace data is not available, or if there
is not enough space for storing a whole streaming trace, this
method cannot be used. Moreover, the snapshots have a
fairly constant size while their number increases with the
trace duration. There may indeed be a lot of redundancy
between the content of snapshots at consecutive checkpoints.

1http://www.dorsal.polymtl.ca

Some values change frequently while others rarely vary and
remain constant from one checkpoint to the next. This does
not scale very well for large trace sizes and long durations.
In some tools, the snapshots were stored in main memory,
forcing a limit on the trace size that they could handle.

To solve this problem, Ezzati et al. [53] proposed a dy-
namic checkpoint method (different checkpoint intervals for
different metrics) to analyze trace events. In their work,
each metric uses its own checkpoint interval, based on its
precision, degree of granularity and importance. They also
avoid storing the whole trace to answer the analysis queries.
Queries are served using only a compact trace index, created
at trace pre-processing time. Although the solution pre-
sented in [53] works well with offline traces and was tested
for very large traces, since they store snapshots and trace
events at regular-basis periods, the size of data stored be-
hind their work grows linearly with the trace size and can
become unexpectedly large for long streaming traces. The
cube data model [62] was proposed to address this problem
for live trace streams of arbitrary size. It enables efficient
multi-level and multi-dimensional trace analysis, similar to
OLAP analysis in database applications.

Montplaisir et al. [97, 98] introduced a tree-based structure,
called “state history tree” to store and query the incremen-
tally arriving interval data. They used this data structure
to manage and model the system state value changes [61].
Since a tree-based structure is used, they can answer the
queries quickly and directly by only traversing the related
branches and nodes, without requiring access to the origi-
nal trace. The problem with their proposed structure is the
large size of the generated tree, which was addressed by the
partial history tree [97]. A partial history tree avoids stor-
ing all intermediate data in the tree, but requires access to
the original trace data during the analysis phase. The par-
tial state history reduces the state history tree size by more
than a hundredfold for a small increase in query time. In
their approach [98, 61], the proposed history tree essentially
stores intervals, each interval represents a state value and
contains a key, a value and a time interval. Since (raw or
abstract) trace events usually have the same content, they
can also be modeled and stored as interval data, as is the
case for the SLOG file format [87].

Chan et al. [87] proposed a file format called SLOG (and
improved later as SLOG2), a hierarchical trace format used
to store trace events (called drawable objects in their work)
in a R-tree like structure for efficient interactive display. The
SLOG file format contains intervals, representing the draw-
able objects, and a tree index schema to provide direct access
to any address within the file. Each interval is described by
bounding times and a thread number. The index tree is like
a binary tree that stores the elements in different-size buck-
ets. At each level of the tree, the duration of the buckets is
the same. In this tree, the root node represents the whole
trace length (interval 0 to T). Each node in the second level
represents time intervals of size 0+T

2
. The next level shows

intervals of size 0+T
4

. In the same way, leaf nodes show in-
tervals that are smaller than or equal to a ∆Tmin. Objects
are stored in the smallest containing node, in both leaf and
non-leaf nodes.



At display time, for any given time t, only the intervals
intersecting with t will be read and displayed. Using this
file format, Chan et al. [87] reported that they could achieve
nearly constant access time for different time intervals. The
main problem with their work is that they use the same time
durations to store the drawable items. For the cases where
trace events are not uniformly distributed along the time
axis, some nodes will be full and others almost empty. This
may affect the access time and give different access times
for different locations in the trace. This solution models
the different drawable objects (events, states and so on) but
does not consider the links and the relations between objects.
Their file format has been used in Jumpshot [27]. Modeling
trace events as interval data, and using interval management
structures to store the trace events, appears to be a good
solution for very large traces.

There are many other interval management structures that
could be used as storage for trace events. The segment-tree
is a basic data structure used for storing the line segments.
It is a balanced binary tree where each node is defined by
its bounding box. In this tree, leaf nodes represent the el-
ementary segments in an ordered way, and non-leaf nodes
correspond to the intervals that are union of the underlying
children’s intervals. The interval duration of each node is
approximately half the interval of its parent node. Figure
10 shows an example of a segment tree. Searching a segment
tree with n intervals and retrieving k intervals intersecting
a query point p, take O(logn + k) time. For retrieving the
segments that intersect a point p, the search starts at the
root node and follows only the branch whose nodes contain
point p, and returns only the intervals that contain the given
point p. A segment tree with n intervals also needs O(n logn)
storage size and can be built in O(n logn) time. Segment
tree is an ideal solution for storing intervals in main mem-
ory. However, for very large traces, when the tree size would
exceed main memory, such a binary tree (each node has two
children) would be difficult to store efficiently on disk, given
its small node size and important depth.

Figure 10: Examples of the segment and interval
tree.

(source: wikipedia.org)

Very similar to the segment tree is the interval tree. The
intervals in this tree are defined as the projection of the
segments (in a segment tree) on the x-axis (Figure 11). In
other words, the difference is that an interval tree performs
stabbing queries in a single dimension. Since the intervals
are not decomposed like for the segment tree, there will be no

redundancy, and therefore the construction time complexity
will be better (O(n) instead of O(nlogn)).

Figure 11: Segments versus intervals.

The Relational Interval Tree (RI-tree) proposed by Kriegel
et al. [99], uses built-in indexes on top of relational
databases to optimize the interval queries. It does not re-
quire any interface below the SQL level and just adds an
in-memory index for interval data to the existing RDBMS.
It can be used to answer efficiently the intersection queries.
The main idea here is to use the built-in relational index
structures, instead of accessing directly the disk blocks, to
manage the object relationships. It is an interesting idea,
since it can easily integrate with relational database sys-
tems, without having to re-implement their existing features.
However, it would remain restrictive for tracing tools to use
only a specific database tool. Montplaisir et al. [97] ex-
perimented with storing traces in databases but incurred a
considerable overhead in both storage space and access time.

R-tree [100] is one of the most common tree data structures
for indexing multi-dimensional information. The R-tree and
its several variants are commonly used to store spatial in-
formation, usually in two or three dimensions. The data
structure groups nearby objects and represents them with
their minimum bounding box (MBB) in the higher levels.
Nodes at the leaf level represent a single object by keeping
track of pointers to that object. However, the nodes in non-
leaf levels describe a coarse aggregation of groups of low level
objects. These objects may overlap or may be contained in
several higher level nodes. In this case, the object is asso-
ciated with only one tree node. Thus, for answering some
queries, it may require examining several nodes for figur-
ing out the presence or absence of a specific object. R-tree
has several extensions such as the R+-tree, R*-tree, SS-tree,
SR-tree and many other variants that aim to increase the ef-
ficiency of the original R-tree method [101, 102].

Figure 12: Set of 2D rectangles indexed by R-tree
and the corresponding structure (right)

(source: wikipedia.org)



Figure 13: An example of the R+-tree to split en-
tries in the tree to remove overlaps

(source: wikipedia.org)

Figure 14: An example of the R*-tree which uses a
combined strategy (little overlap but better query
performance)

(source: wikipedia.org)

In general, the R-tree and its extensions do not work well
for sequences of long intervals with significant overlap [103].
Indeed, splitting and merging (re-balancing) the nodes cause
many updates to the data structures, and as a result induce
severe performance degradation.

In the same way, other access methods and spatial index
structures have been surveyed in [104], reviewing the B-
tree, Hb-tree, R-tree (and its variants: R+-tree and R*-
tree), Quad-tree, and other data structures used for manag-
ing intervals and their hierarchical organization. Although
most of these techniques have some interesting character-
istics than can be used to organize trace events, they are
generally not used directly in the trace tools. A custom
built file storage and indexing format is typically used e.g.,
SLOG [87] and State History Tree [98].

Please note that this review of data structures and access
methods focused on abstract trace events in interval form.
Moreover, the access methods of interest were for ordinary
operations like explore, zoom and pan. Obviously the as-
sumptions may differ for other use-cases, for example to im-
plement a call-graph view and to focus on the caller-callee
relations, where a graph data structure may be more appro-
priate.

5. DISCUSSION
The discussion of the surveyed methods is presented through
the following three subsections: trace abstraction, trace vi-
sualization and data model.

Trace Abstraction
Trace tools can help users to understand the runtime behav-
ior of systems. One difficulty with trace tools is that they
have to deal with large data sets. Multi-level visualization is

one technique than can help trace tools to cope better with
huge traces. However, multi-level visualization tools need a
good support for data abstraction techniques, to reduce the
original trace size and generate multiple levels of high-level
events.

In this paper, a taxonomy of trace abstraction techniques is
presented. The studied trace techniques are i) the content-
based method, mostly using the content of the trace data to
reduce its size, ii) the metric-based method, used to gener-
ate statistics for important system parameters, iii) visual ab-
straction, focusing on the simplification of the trace events
display and finally iv) resource-based abstraction, centred
around the organization of system resources to better dis-
play the underlying data.

Among the above abstraction methods, the metric-based
technique is widely used in trace visualization tools. It helps
to get a better overview of the underlying system execution.
The output of the metric-based abstraction is typically dis-
played by means of histograms or other similar charts. These
views are usually displayed in the highest level view in trace
visualization tools.

A combination of these methods is often used by trace tools
to reduce the trace size and complexity, remove the noise
and unimportant data, and generate high level information
for the different levels of granularity. This is later used for
program comprehension, problem detection, monitoring, vi-
sualization, etc.

Trace Visualization
The main goal of multi-level visualization is enabling a
multi-level analysis of trace data to get a better comprehen-
sion of the underlying data. Indeed, displaying the data at
multiple levels of details can enable top-down and bottom-
up analysis, which matches the human cognitive model.

Existing trace visualization tools usually display the be-
havior of underlying systems using timelines, sequence dia-
grams, control flow diagrams, etc, which are different types
of space-time (or Gantt charts) data representations. In
these views, one axis is used to display the software modules,
system resources or processes, and another axis to display
the time. The main problem with space-time diagrams is
scalability. The number of resources, and also the number
of time line elements (i.e., executions) are limited to the vis-
ible screen size and resolution. It is not usually possible to
display more than a few elements on the screen.

This problem is alleviated using multiple synchronized
views. In this model, in addition to the main space-
time view, another view is used, for example to display an
overview (high level view) of the trace. Users can then ex-
plore the overview and go back and forth, selecting an area
to get the details in the main space-time diagram. This
overview usually shows the statistical information of one
aspect of the execution (e.g., IO throughout, CPU usage,
number of calls, etc.) to provide an overview of the system
execution. Adding other views (e.g., views for other types
of statistics) can be useful. However, increasing the num-
ber of views, and forcing users to rely on multiple different
views, may raise the complexity of the tool and the analysis



process.

Some tools solve this problem by hierarchical organization of
the trace data, exploiting inherent hierarchical visualization
techniques like treemaps [25] node-link tree-representations
[58], multiple levels, etc. However, the multiple levels tech-
nique supporting semantic zooming is seldom used in the
context of trace data, even though it proved very valuable
in spatial applications (e.g., Google maps). It should be
noted that in the multiple levels view, the data organization
is an important factor to achieve scalability, and thus should
be considered very carefully. Also, avoiding big jumps be-
tween zooming views, and providing smooth and seamless
transitions, is another important factor.

Among the different techniques presented to display hier-
archical trace data, it is difficult to determine which one
achieves a globally better performance. It strongly depends
on the requirements and use-cases. For example, to dis-
play a cube of trace data and to provide analysis based on
system statistics, a space filling technique is generally more
suited. To visualize the operations of a process at different
levels, or to relate user space function calls to the kernel
system calls, a multiple levels view is particularly appropri-
ate. To study a trace from different (unrelated) aspects, a
multiple view technique is suggested. To browse a tree hier-
archy, focus+context methods may perform better. In some
use-cases, a combination of methods can also be used. For
example, a multiple levels treemap method is proposed in
the literature [105] to explore very large hierarchical data
(e.g., 700k nodes amongst 13 levels). A summary is shown
in Table 2.

Another feature, sometimes neglected in trace visualization
tools, is establishing links between related events in different
levels and their visual representation. If trace visualization
tools want to be more useful in general, they should propose
models to easily address the links between corresponding
events and items, where linking enables a proper hierarchi-
cal navigation to follow a high level issue. For example, when
a problem is displayed in a high level view, users may want
to dig into that and find more relevant detailed informa-
tion. Establishing links between the corresponding events,
and proper visualization of links, can help users to better un-
derstand the situation by following the links to the relevant
entities and actions, from among the thousands or millions
of trace events.

Data Model
In trace visualization tools, the design of the underlying data
model should enable compact and efficient storage, good in-
teractive query response time, and excellent scalability. Dif-
ferent techniques are described in this paper to model the
trace data. Trace data can be hierarchically organized us-
ing the either of the studied techniques: R-tree, Quadtree,
custom methods (SLOG, State History Tree), etc.

Although the internal data structures were not detailed for
the presented techniques, they can all be used to index the
(abstract) trace data at multiple levels. However, this is
different from managing the links and connections between
data items. Indeed, although some of those techniques can
be used to manage the hierarchy, they only support one

form of hierarchy (e.g., time based hierarchy or aggregation
hierarchy). However, the trace data may have separate hi-
erarchies for different attributes, which could be addressed
by a proper linking method. Also, the non-hierarchical rela-
tionships (e.g., the relation between file operations and disk
block operations) should be covered as well. Therefore, the
design of the data structure should clearly take into account
the relations between events in different layers, and the way
they are stored, extracted and visualized.

An example of the links between different elements can be
found in a file system, where there are hierarchies of disk
blocks, files and directories. For a better presentation, and
navigation through this hierarchy, the links should be mod-
eled in the infrastructure. For example, while they use a
similar file tree hierarchy, Linux uses I-nodes to implement
the links between a directory and its files and a file and its
blocks, and Windows may use a File Allocation Table (FAT),
a chain of addresses, to manage the links between directo-
ries, files and disk blocks. Links between elements can also
be found in SOLAP (Spatial OnLine Analytical Processing)
systems [106, 107, 108]. However, they mostly use existing
database systems to store links between elements, and their
internal structure is not clearly known. Most existing trace
analysis and visualization tools do not consider the linking
between events in different levels. It should be an important
focus for future work, for the trace visualization tools.

6. CONCLUSION
Different trace abstraction methods, visualizations of
multiple-level data, and related data models are discussed
in this paper. The Focus+context method is one approach
to display the data hierarchy at different levels. It is more
frequently used to display data that has a clear hierarchi-
cal structure and fits nicely in a graph or tree. The Space
filling technique efficiently uses the entire display screen. It
splits the display screen between the items of the hierar-
chy based on their importance. The focus of this method
is more on the leaf nodes, while detecting and studying the
intermediate nodes remains possible. Multiple levels sup-
porting semantic zooming is another important method to
display a data hierarchy. This technique is exploited in many
spatial applications (e.g., online maps) and proved to have
a good performance to increase the comprehension of the
underlying data. However it is not much used in trace tools
and deserves to be investigated in future work. Displaying
different data levels in separate views is the essence of the
fourth method and is used in most trace visualization tools.

Trace analysis tools often generate events at different lev-
els of abstraction. It is possible to study the behavior of
the system under consideration using each level separately.
However, due to the predefined degree of details for each
level, it is difficult to interpret and understand all aspects
of the system by analyzing each level separately. Thus, it
can be extremely useful to be able to extract on demand
more details for an area of interest. However, this requires
an exploration mechanism for different levels of events. In
the literature, the related research mostly describes the ab-
straction method, as well as several interactive techniques
to represent and visualize the results. However, many of
these lack a proper linking and link navigation mechanism
between views. This impedes the interpretation and explo-



Table 2: Comparison of hierarchy visualization techniques
Technique Main feature Weakness Use-case

multiple views display different aspects of the trace in
different views

it could be difficult to follow all views
together

displaying different and unrelated as-
pects of the trace: statistics view, ex-
ecution states, function calls, individ-
ual events and so on

multiple levels display a related set of behaviors at
different levels and enable zooming be-
tween levels

users have to conform and relate the
different zoom states together

displaying system functionalities and
operations at several levels (user space
level to kernel level)

focus+ context display the whole view at once and en-
able users to focus on a selected area

not applicable for very large data as
well as for semi or un-structured data

displaying the tree-based hierarchies:
list of active system processes and the
parent/child relations between them

space filling splits the screen between all nodes
based on their properties (size, impor-
tance, etc.)

it is difficult to follow the global and
overall relationship

displaying a set of statistical data and
their proportions together: CPU us-
ages for different processes

ration of trace events. Mechanisms to drill down to the lower
levels, and extract more detailed information, are seldom
discussed. Nonetheless, such a linkage between extracted
abstract events and the underlying data can support bet-
ter runtime behavior navigation and comprehension. An
effective visualization tool should support such links. Trace
abstraction and hierarchy visualization techniques are other
interesting aspects presented in this paper which should be
considered in future work.
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mÃl’triques dans les systÃĺmes virtualisÃl’s,”
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[92] K. E. Isaacs, A. GimÃl’nez, I. Jusufi, T. Gamblin,
A. Bhatele, M. Schulz, B. Hamann, and P.-T.
Bremer, “State of the Art of Performance
Visualization,” in EuroVis - STARs (R. Borgo,
R. Maciejewski, and I. Viola, eds.), The Eurographics
Association, 2014.

[93] A. Landge, J. Levine, A. Bhatele, K. Isaacs,
T. Gamblin, M. Schulz, S. Langer, P.-T. Bremer, and
V. Pascucci, “Visualizing network traffic to
understand the performance of massively parallel
simulations,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 18, pp. 2467–2476, Dec
2012.

[94] A. Bhatele, T. Gamblin, K. E. Isaacs, B. T. N.
Gunney, M. Schulz, P.-T. Bremer, and B. Hamann,
“Novel views of performance data to analyze
large-scale adaptive applications,” in Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC

’12, (Los Alamitos, CA, USA), pp. 31:1–31:11, IEEE
Computer Society Press, 2012.

[95] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. M. Vlissides, and J. Yang, “Visualizing the
execution of java programs,” in Revised Lectures on
Software Visualization, International Seminar,
(London, UK, UK), pp. 151–162, Springer-Verlag,
2002.

[96] W. De Pauw and S. Heisig, “Visual and algorithmic
tooling for system trace analysis: a case study,”
SIGOPS Oper. Syst. Rev., vol. 44, pp. 97–102, Mar.
2010.

[97] A. Montplaisi, “Stockage sur disque pour accÃĺs
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