

TraceCompare: Automatic Identification of Differences between Executions

François Doray Tracing Summit - August 2015

Introduction

Performance

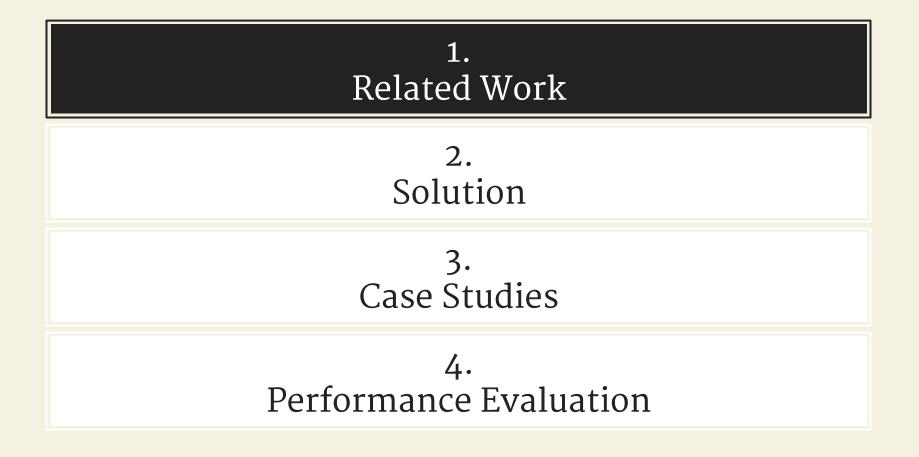
is a critical requirement

Sources of performance variations

- Update to a program, library or OS $oldsymbol{igo}$
- Interaction between tasks ۲
- Programming error $oldsymbol{O}$
- Different system load

Developers don't understand 100% of the systems they develop.

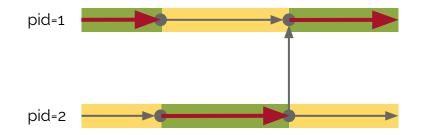
Tracing: Record events that occur during the execution of a system.


View a trace in **TraceCompass**

	calhost/kerr	nel 🛢	• Control Flow 🛱			静 🗉 💧 🖁	६ 🗞 🕂 🔍 🔍 🔍 🖓 🔶 🤞	† – –
Process	TID	PTID	Birth time	Tr	10:57:44.600	10:57:44.800	10:57:45.000	
apache2	1976	1884	10:57:42.709923901	lo				
apache2	1977	1884	10:57:42.709925374	lo		l II	i ii	
apache2	1978	1884	10:57:42.709926841	lo		i i i		
apache2	4614	1884	10:57:42.710534588	lo				
apache2	4615	1884	10:57:42.710536381	lo				
apache2	4680	1884	10:57:42.710539453	lo		Î I		i 📋
apache2	4682	1884	10:57:42.710541247	lo				
apache2	4684	1884	10:57:42.710542695	lo				
apache2	4685	1884	10:57:42.710544109	lo				
apache2	4689	1884	10:57:42.710545474	lo				
apache2	5660	1884	10:57:43.726747496	lo				
anache2	5722	1884	10.57.44 728218646	10				
(4)) < ((· · · ·))))
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
Statistics 🖩 R			)				i≣   ဤ 1% 1% 6 0 0 0 0	) 
Statistics 🖩 R	015 Jan 06 1	0:57:44.	500 <u>10:57:44.600</u>		700 <u>10:57:44.800</u>	10:57:44.900	i≣   🏠 🏷 🏷 🕀 🔍 ∈ 10:57:45.000 10:57:45.100	
Statistics FR 2 Incalhost/kernel	015 Jan 06 1	0:57:44.	500 10:57:44.600		700 10:57:44.800	10:57:44.900		
□ Statistics 2 □ localhost/kernel CPU 0	015 Jan 06 1	0:57:44.	500 10:57:44.600		700 10:57:44.800	10:57:44.900		
Statistics FR 2 Incalhost/kernel	015 Jan 06 1		500 10:57:44.600		700 10:57:44.800	10:57:44.900		
□ Statistics 1 R 2 □ localhost/kernel CPU 0 CPU 1	015 Jan 06 1				700 10:57:44.800	10:57:44.900		
Statistics FR R 2 CPU 0 CPU 1 CPU 2 CPU 3 CPU 4	015 Jan 06 1							
Statistics	015 Jan 06 1							
Statistics     FR     Z      CPU 0     CPU 1     CPU 2     CPU 3     CPU 4     CPU 5     CPU 6	015 Jan 06 1					10:57:44.900		
Statistics    E    Re    Re     2     2     CPU 0     CPU 1     CPU 2     CPU 3     CPU 4     CPU 5     CPU 6     CPU 7	015 Jan 06 1							
Statistics     ER     Z      CPU 0     CPU 1     CPU 2     CPU 3     CPU 4     CPU 5     CPU 6     CPU 7     IRQ 16	015 Jan 06 1							
Statistics    E    Re    Re     2     2     CPU 0     CPU 1     CPU 2     CPU 3     CPU 4     CPU 5     CPU 6     CPU 7	015 Jan 06 1							

Introduction

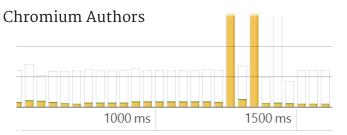



Can we facilitate the diagnosis of performance variations with an algorithm that automatically identifies <u>differences between two groups</u> <u>of execution traces</u>?

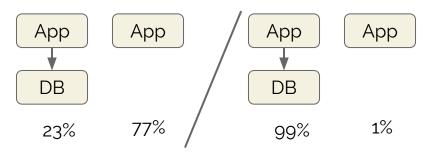


#### 1. Related Work / Extracting Task Executions

#### Approximation of Critical Path Giraldeau & Dagenais


- Heuristic that uses kernel events to build:
  - Graph of dependencies between threads.
  - List of segments that belong to the critical path of an execution.




Alternate solution: **Dapper** Sigelman & al. (2010)

#### 1. Related Work / Comparing Task Executions

#### "Frames" mode of Chrome



#### Spectroscope Sambasivan & al. (2007)



#### Differential Flame Graphs Gregg (2014)



Image credit: Brendan Gregg / With permission.

#### TraceDiff Trumper & al. (2013)

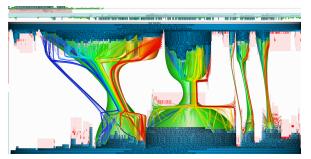
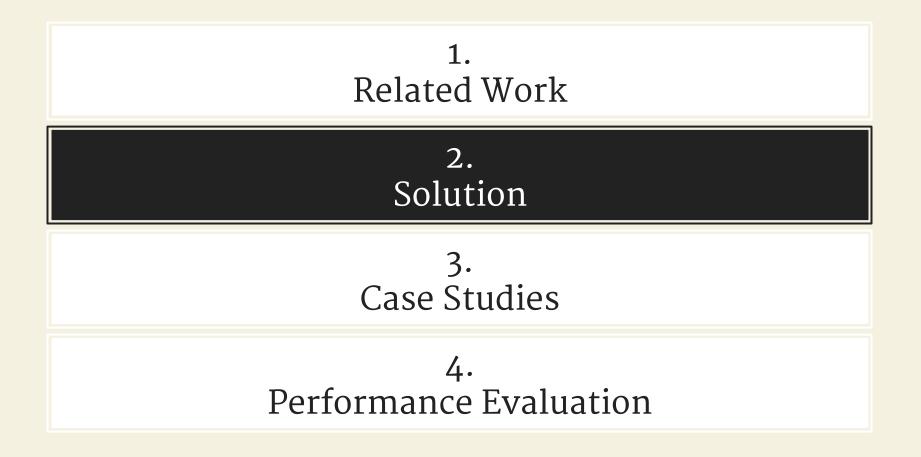
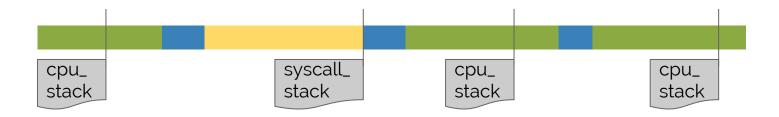




Image credit: Jonas Trümper / With permission.




#### 2. Solution / Required Events

#### cpu_stack

- Generated periodically when a thread is on the CPU.
- Uses ITIMER_PROF.

#### syscall_stack

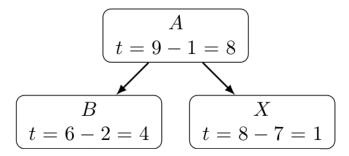
- Generated on long system calls.
- Duration of system calls tracked in a kernel module.
- Stack captured from a <u>signal</u> handler.



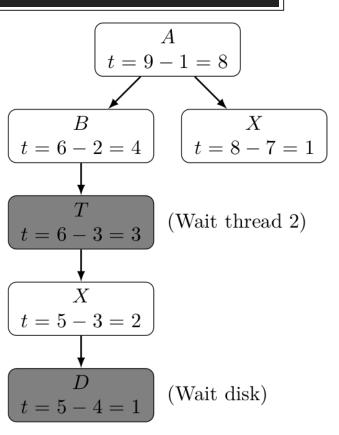
#### 2. Solution / Required Events

#### cpu_stack

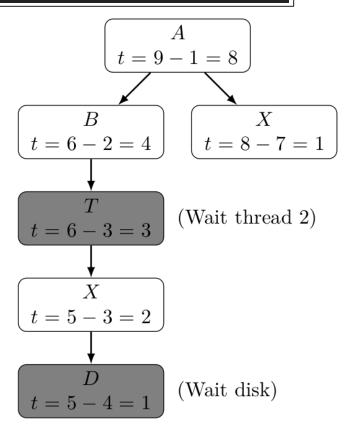
- Generated periodically when a thread is on the CPU.
- Uses ITIMER_PROF.


#### syscall_stack

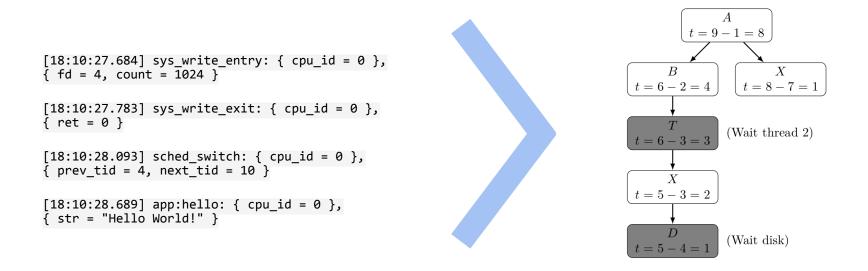
- Generated on long system calls.
- Duration of system calls tracked in a kernel module.
- Stack captured from a <u>signal</u> handler.


#### **Kernel Events**

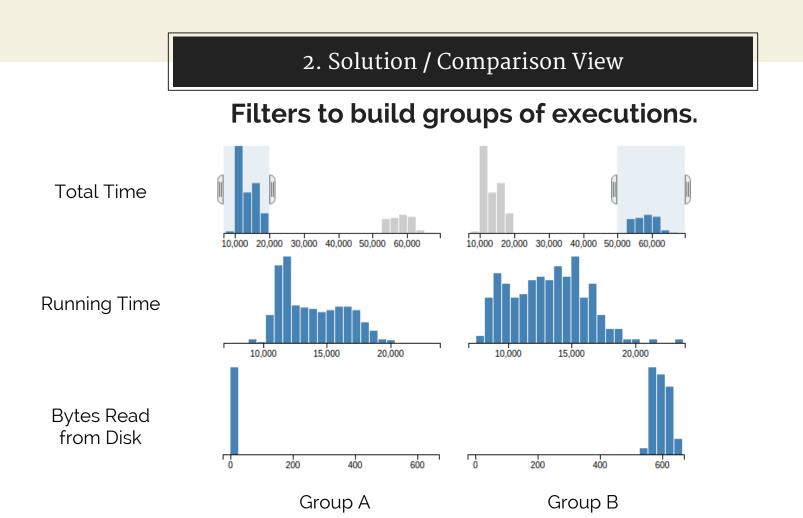
• To compute the critical path of executions.


Time	Thread 1	
1	Call A	
2	Call B	
3		
4		
5		
6	Return B	
7	Call X	
8	Return X	
9	Return A	




Time	Thread 1	Thread 2
1	Call A	
2	Call B	
3		Call X
4	Wait thread 2	Wait disk
5		Return X
6	Return B	
7	Call X	
8	Return X	
9	Return A	



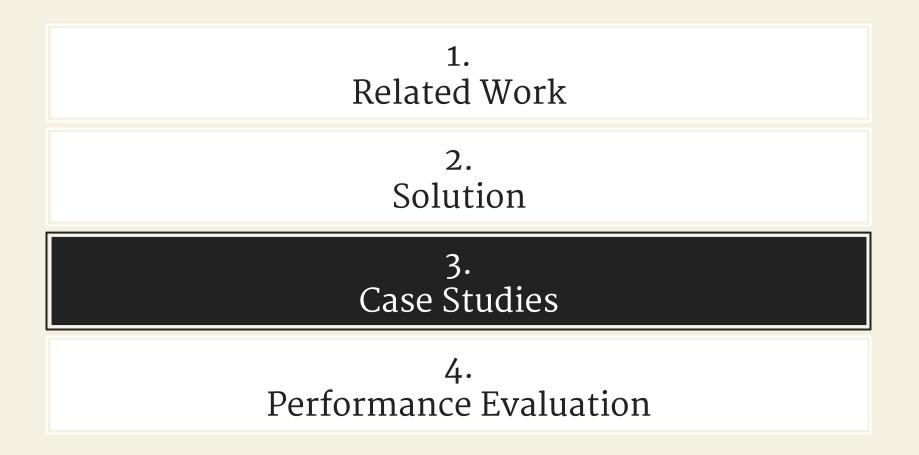

- Any type of latency.
  - CPU usage
  - Disk / network
  - Dependencies between threads



• Context of each latency.



State History Tree




2. Solution / Comparison View

#### « Enhanced» Differential Flame Graph



• Red = time difference between compared groups.



#### **MUTEX**



Mutex held during a long operation for no reason. In MongoDB.

#### **SLEEP**

Using sleeps to synchronize threads. In MongoDB.

22222222

#### PREEMPTION

Critical operation preempted by a low priority thread.

#### DISK

Web request slowed down by the OS committing data to the disk.



#### MUTEX

Mutex held during a long operation for no reason. In MongoDB.

#### SLEEP

Using sleeps to synchronize threads. In MongoDB.

2222222

#### PREEMPTION

Critical operation preempted by a low priority thread.

#### DISK

Web request slowed down by the OS committing data to the disk.



http://fdoray.github.io/tracecompare/tracecompare.html?data=mongowrite

#### **MUTEX**



Mutex held during a long operation for no reason. In MongoDB.

#### SLEEP

Using sleeps to synchronize threads. In MongoDB.

22222222

#### PREEMPTION

Critical operation preempted by a low priority thread.

#### DISK

Web request slowed down by the OS committing data to the disk.



#### MUTEX



Mutex held during a long operation for no reason.

In MongoDB.

#### SLEEP

Using sleeps to synchronize threads. In MongoDB.

2222222

#### PREEMPTION

Critical operation preempted by a low priority thread.

#### DISK

Web request slowed down by the OS committing data to the disk.



http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt

#### MUTEX

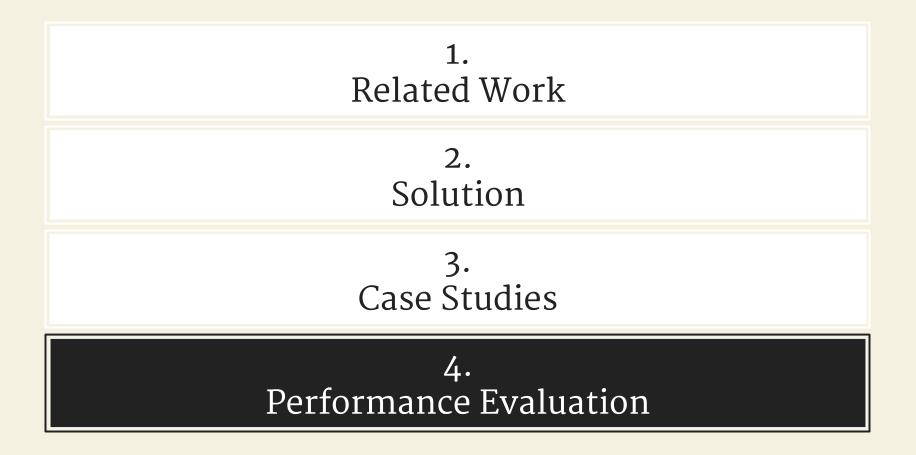


Mutex held during a long operation for no reason. In MongoDB.

#### **SLEEP**

Using sleeps to synchronize threads. In MongoDB.

22222222


#### PREEMPTION

Critical operation preempted by a low priority thread.

#### DISK

Web request slowed down by the OS committing data to the disk.





#### 4. Performance Evaluation / Overhead

Application	LTTng overhead
<b>Prime</b> CPU only.	0.2%
<b>Find</b> Long disk requests.	5%
<b>Mongod</b> Interactions between threads.	9%

* Quad-core Intel® Core™i7-3770 CPU @ 3.4 GHz, 16 GB RAM, 7200 RPM hard drive.

#### 4. Performance Evaluation / Overhead Comparison

Application	LTTng Overhead	DTrace Overhead	ETW Overhead
	(Linux)	(Mac)	(Windows)
<b>Prime</b>	-0.1%	1.0%	0.0%
CPU only.	±0.3%	±0.1%	±0.1%
<b>Mongod</b> Interactions between threads.	8% ±1%	24% ±0%	24% ±1%

* 95% confidence intervals.

* **MacBook Pro** Quad-core Intel® Core i7[™]-3720QM @ 2.6 GHz, 8 GB RAM, SSD.

#### Conclusion

#### Summary

- Trace call stacks.
- Enhanced calling context trees.
- Compare groups of executions using filters and flame graphs.
- Works with open-source and enterprise apps.

#### **Future Work**

- Support more interactions:
   VMs
  - GPUs
- Dynamic languages / JIT
- Support code refactoring



#### References

The Chromium Authors, "Performance profiling with the timeline", https://developer.chrome.com/devtools/docs/timeline, consulted on March 25, 2015.

F. Giraldeau and M. R. Dagenais, "Approximation of critical path using low-level system events", to be published.

B. Gregg, "Differential flame graphs", http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html, November 2014, consulted on March 24, 2015.

J. Oakley and S. Bratus, "Exploiting the hard-working dwarf : Trojan and exploit techniques with no native executable code", in Proceedings of the 5th USENIX Conference on Offensive Technologies, WOOT'11. Berkeley, CA, USA : USENIX Association, 2011, p. 11.

R. R. Sambasivan, A. X. Zheng, E. Thereska, and G. R. Ganger, "Categorizing and differencing system behaviours", Hot Topics in Autonomic Computing, p. 2, June 2007.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, "Dapper, a large-scale distributed systems tracing infrastructure", Google Research, 2010.

J. Trumper, J. Dollner, and A. Telea, "Multiscale visual comparison of execution traces", in IEEE 21st International Conference on Program Comprehension (ICPC), May 2013, pp. 53–62. DOI : 10.1109/ICPC.2013.6613833.

#### Credits

Presentation by François Doray, master's student at the <u>Distributed open reliable systems analysis lab (DORSAL)</u> of Polytechnique Montreal.

Special thanks to <u>SlidesCarnival</u> for releasing this presentation template for free (<u>CC BY 4.0</u>).