
State History Tree : an Incremental Disk-based Data Structure for

Very Large Interval Data

A. Montplaisir-Gonçalves N. Ezzati-Jivan F. Wininger
M. R. Dagenais

alexandre.montplaisir, n.ezzati, florian.wininger, michel.dagenais @polymtl.ca

August 9, 2013

Abstract

In this paper, we propose the State History Tree, a
disk-based data structure to manage large streaming
interval data. The State History Tree provides an ef-
ficient way to store interval data on permanent stor-
age with a logarithmic access time. The disk-based
structure ensures that extremely large data sets can
be accommodated. The State History Tree stores in-
tervals in blocks on disk in a tree organization. Un-
like other interval management data structures like
R-Trees, our solution avoids re-balancing the nodes,
speeding up the tree construction. The proposed
method is implemented in Java, and evaluated using
large data sets (up to one terabyte). Those data sets
were obtained from the state intervals computed from
system events traced with the LTTng kernel tracer.
The evaluation results demonstrate the performance
and efficiency of the method, as compared with other
solutions to managing huge interval data sets.

1 Introduction

Several methods have been introduced in the litera-
ture to manage data intervals within different appli-
cations and database systems. However, managing
incrementally-arriving data (e.g. data streams com-
ing from network or system traces, phone call logs,
financial transactions, and so on) introduces some
performance challenges and is required in many ap-
plications.

In this paper, we present the State History Tree
to manage a large set of interval data that arrive in-
crementally and are time ordered. The State His-
tory Tree is a data structure to store intervals, and
is optimized for block devices like rotational disks.
Most existing tree structures proposed in the litera-
ture to deal with intervals are currently optimized for
memory storage (typically binary trees, with a large
number of levels). Other structures like B-trees are
well optimized for disk storage. Unfortunately, they
deal with single values, not intervals. The State His-
tory Tree presented here borrows concepts from both
those types of structures, and allows storing a large
number of intervals on disk, while allowing them to
be queried in an efficient way.

We have used the State History Tree to manage
intervals of system state values, coming from trace
data generated by the LTTng tracer [1]. The State
History tree stores data in logical nodes which are
mapped to a single or multiple disk blocks. Each
node may contain numerous intervals. Each interval
contains the start and end points (timestamps), a
key and a value. The key can be a single value or a
multi-part value. Integer and String data types are
supported for the value.

The interval data is stored in tree nodes in memory
while it arrives incrementally. When a node is full, it
is committed to disk, and another node is created and
added to the tree. This solution avoids re-balancing
tree nodes and results in a very fast tree construc-
tion. Also, although the data is stored on disk, it

1

still provides a fast access time (logarithmic).
The rest of the paper is organized as follows: we

first take a look at different structures used to manage
intervals, then we present the details of our solution.
Finally, we will discuss the implementation of our
solution and compare its performance with other data
structures like the R-Tree and PostgreSQL/PostGIS.

2 Related Work

Several methods have been introduced in the litera-
ture to store and manage interval data. Here, we will
review several structures and compare them to our
use cases.

Segment tree

The segment tree is a binary tree (two children per
node) and, as described in [2], is well-known to store
intervals in one dimension. It is actually a balanced
tree, with a static structure, where a tree node may
correspond to several intervals. This implies that the
tree will usually be deep. The segment tree is there-
fore more appropriate for main memory storage.

When a hard disk is used, the number of non-
consecutive blocks to read is the main concern. In-
deed, the disk head must be repositioned before each
read, adding the positioning time to reading time.
For this reason, disk based trees typically use large
tree nodes and a large number of children at each
node, leading to a shallow tree. In that case, each
node fits in a disk block and for a typical access, from
the root to a leaf in the tree, few blocks need to be
read.

R-Tree and its Variants

The R-Tree [3] and its variants like R+ Tree [4] and
R* Tree [5] are widely used to store spatial informa-
tion, usually in two or three dimensions, but they can
also be used in a single dimension. All data stored
in the tree are completely contained at the leaf level.
Each additional level only increases the ”mesh”. As
the tree is not binary, they are better than segment
trees for disk storage.

The R* Tree meanwhile is closer to the original
R-Tree, but offers a more complex insertion method,
which uses heuristics to ensure that each leaf node
is as balanced as possible. Queries on R* Tree are
generally faster, with a better nodes arrangement.

The principle behind the Hilbert R-Tree [6], an-
other variant of the R-Tree, is to use the Hilbert curve
1 on the values to be stored to define the nodes of
the tree. This results in a very compact tree that is
well suited for interval queries. The Hilbert R-Tree is
more suitable for high-dimensional data sets. There-
fore it is probably not the ideal structure to store
single dimensional time information.

Finally, another potentially interesting variant is
the Historical R-tree [7]. It stores time changing in-
formation. The method used is to keep a separate
R-Tree for each time unit. Identical nodes from one
tree to another will not be copied, but only a refer-
ence to the first node of the series.

Nevertheless, we can expect some space overuse. If
only one value changes in a node, the full node must
be copied in the next tree. In addition, the creation
of a tree per time unit may become very costly for
trace analysis, where the base unit is typically the
nanosecond.

B-Trees

The B-Tree, first introduced by Comer [8], suggests
another tree organization that can be conducive to
disk storage. The nodes are usually large, and have
many children. This leads to shallow trees, so a few
different nodes will be read during the exploration of
a single branch.

B-Trees are balanced structures with a configurable
node size (number of entries contained within). Each
intermediate node contains an array of key and child
pairs. All the values in a child (and its recursive
children) will be located between the previous and
current key. The tree should be rebalanced when
adding or removing nodes. The criteria for adding or
removing a node can be configured. For example, one
may decide to split a node when it becomes full, but
to merge adjacent nodes only if the resulting node

1https://en.wikipedia.org/wiki/Hilbert_curve

2

would be 50% full or less.
The use of B-Trees for a file or database systems

is interesting, but the use of COW (Copy-on-Write)
makes it more exotic and difficult to apply to disk
storage of intervals.

7

Hybrid structures

In this final subsection, we introduce more
application-specific structures. We first studied the
Interval B-tree of [9]. It proposes the use of three
data structures, all contained in memory, to store in-
tervals. The three components are a B+ Tree, two
linked lists, and a binary search tree. The first two
contain information relative to the intervals them-
selves, and the third serves as an index to speed up
queries. To increase the capacity of the structure,
the B+ tree could possibly be saved to disk and re-
main relatively effective. However this is not the case
for the linked lists or the binary tree. Moreover, as
the content of these structures grows with the num-
ber of inserted intervals, we would still be limited by
memory space.

We then looked at the Relational Interval Tree,
or RI-Tree [10]. Their solution is actually an ex-
ternal addition to a relational database. They use
an in-memory structure for intervals, which enables
the optimization of queries that will ultimately be
sent to the database. Their work is interesting, and
can be used to extend the functionality of a standard
RDBMS to support efficiently interval data and in-
tersection queries. However, as will be seen in the
results section, using a general purpose database in-
curs a significant performance penalty.

Then, the MV3R-Tree [11] caught our attention.
The Multi-Version 3D R-Tree is actually a MVR-
Tree (Mutli-version R-Tree) coupled with R-Trees in
three dimensions. However, as can be expected, they
use the R* Tree algorithm for separating nodes, since
it generally gives more efficient trees. The authors
say that by using these structures in parallel, they
can respond to two common types of queries on spa-
tial data structures: the MVR-Tree is ideal for point
queries applications, but the 3D R-Tree will be bet-
ter for interval queries. In our case, we are mostly

interested in point queries, we will thus focus on the
MVR-Tree.

A MVR-Tree is an alternative to the Historical
R-Tree, mentioned earlier, for storing the evolution
over time of a regular R-Tree. Instead of creating a
new tree for each time unit, as with the Historical
Tree, the MVR-tree uses the time as third dimen-
sion. Thus, it saves considerable space compared to
the Historical Tree. This makes it an excellent struc-
ture for recording the evolution of the 2D position of
objects through time, for example.

Although this kind of structure is very interesting,
it probably does not lend itself well to store interval
data, where our only dimension is time. It would also
be incorrect to consider such attributes as another
dimension, since we have no guarantee that there are
logical connections between them (this is not because
a given attribute has changed that his neighbours are
likely to change). In addition, the values of intervals
are mostly qualitative, so you can usually not even
talk about values ”closer” to each other.

Finally, we studied the External Interval Tree [12].
Of all the solutions proposed so far, it seemed the
closest to our application. The authors define the
Weight-balanced B-tree, or B-tree swayed by the
weight. In this variant, it is not the number of chil-
dren which is the criterion of re-balancing, but the
weight assigned to each sub-branch. The weight is
determined by the total number of items located in
the sub-branch, not the number of nodes in the next
level.

This can help to better manage the re-balancing
steps of the structure on disk. Indeed, since we are on
disk, we should minimize rebalancing. The main sec-
tion of the paper describes ways to perform these re-
balancing without sacrificing too much performance.
The techniques are very clever, but unfortunately it
would not help us much for interval storage. As we
will see in the next section, our intervals are already
sorted when inserted, it is thus easier to design a
structure that never needs to be rebalanced.

Nonetheless, maintaining a constant depth for all
tree branches is desirable. Indeed, if the tree has
the same number of nodes in all its branches, the
query time will be essentially the same, regardless of
the location targeted. It also controls the worst-case

3

behavior, a desirable feature for our application.

3 Design of the History Tree

In this section, we propose the State History Tree, a
data structure to store intervals optimized for block
devices. It is by no means balanced, there is no con-
cept of re-balancing the tree. To clarify our use cases,
we introduce the following assumptions on the inter-
vals to be stored in this structure:

• The time is used to define interval borders. How-
ever, other information can be used here as well
(e.g. physical location).

• The interval lengths are short on average, rela-
tive to the total length of the structure (in our
case, the trace).

• The intervals will be inserted in sorted order of
end time.

The third assumption is particularly important in
the design of the history tree. If the intervals are
inserted strictly in chronological order, without ever
inserting ”in the past”, this means that the struc-
ture will never have to be rebalanced. It could also
be built incrementally (where the completed portion
of the structure does not change thereafter). In the
following, we discuss the various components of the
State History Tree to understand how the tree is built
and how it can be used later.

3.1 Intervals

Intervals are the basic units of the history tree. Each
interval consists of a key, a value, a start time and an
end time. The start and end times are the bounds of
the interval, and represent a period for which a given
attribute has a given value. These times must be in-
teger values and represent times in minutes, seconds,
microseconds or even nanoseconds.

The key is an integer and may come from another
tree or structure to explain what entityattribute has
the associated value for the specified interval.

The value is the actual payload of the interval, rep-
resenting the exact value of the given key in the cor-
responding time duration. For example, in the con-
text of the execution trace on a multicore system,
sample keys and associated values for different inter-
vals could include: (PID of current process on CPU0,
1534), (command name of process 1534, ”bash”), (ex-
ecution state of process 1610, BLOCKED ON IO),
etc.

3.2 Tree Nodes

The nodes of the State History Tree are the direct
containers for intervals. Thus, in addition to the in-
tervals contained within, each Node stores the fol-
lowing fields: sequence number, start time, end time,
pointer to parent node, pointers to children, children
start times, list of contained intervals.

When the tree is built, sequence numbers are at-
tributed sequentially to nodes as they are created.
They give a unique ”key” to each node, which is
used to locate it in the disk file. The Start time and
End time are simply equal to the earliest and latest
timestamps, respectively, found amongst all the in-
tervals it contains. Each node also keeps an array of
timestamps, representing the start times of its chil-
dren nodes. When we navigate the tree downwards
using a target time value, we want to be able to select
the correct child node without having to read all of
them from disk. Having the ”borders” of each child
also stored in the parent node allows us to do so.

3.3 Blocks

Nodes and their contents are written to disk as
”blocks”. Each block has a fixed-size, which is user-
specified at construction time and stored in the file
header. Each block contains a fixed-size header, a
Data section and a Strings section. The header con-
tains global information about the associated node.

Each interval belonging to this node will have an
entry in the Data section. Each entry has a fixed size,
which allows random access to the entries, for exam-
ple to perform a binary search. The number of such
entries however varies from node to node depending
on the size needed by the Data and Strings sections.

4

The Strings section is used to store variable-length
arrays of bytes. Because of the variable size of its
elements, the Strings section starts at the end of the
node and grows backwards. The entries in the Data
section can optionally refer to an entry in the Strings
section.

The size of each block is determined in advance.
Nodes therefore have a limit on the number of in-
tervals they may contain. This limit also depends
on the type of interval contents, since interval values
with strings can be of variable size.

As a node grows, the end of the Data section and
the start of the Strings section will get closer, up
to the point where there will not be enough space
between the two and an interval insertion will fail.
Therefore, when a node is ”full”, it has reached its
maximum size, and no more interval can be inserted
from now on. When this happens, the node is saved
to disk, and no more insertions will be allowed.

3.4 Tree Construction

So far, we have seen different parts of the history
tree. Let’s see how they fit together to form a tree.
The State History Tree is based on the fact that inser-
tions will be done sequentially, with intervals inserted
sorted by ascending End times.

The tree supports inserting elements farther in the
past, but doing it often can lead to more imbalance
(higher level nodes being filled faster than leaves),
and at worst the tree would degenerate into a linear
list of nodes.

When a node is full (when there is no more room
in the block on disk), it gets ”closed”, and the latest
End time found in the interval it contains becomes
the node’s End time. A new sibling node is then
added to its right. If the maximum number of nodes
is reached in the parent, a new sibling is added to the
parent, and so on up to the root node.

The following list of figures shows an example of a
tree that gets built from scratch. The small numbers
represent start times and end times for each node.

Figures 1 and 2 show the different construction
phases of the history tree.

The construction algorithm starts with a single
empty node, and with its start time equal to the start
time given to the state history (we use 0 here). All
inserted intervals are stored in this node.

When the node is filled, we mark it as ”full” and
note the highest time among the existing interval
ends. We assign this time as the node’s own end
time. We now need to add a sibling node in which
we can continue to insert the following intervals. A
new root must also be added to connect the two sib-
lings. The start time of the new sibling is the end
time of the initial full node.

For future insertions, a choice must be made be-
tween the right child node and the root node, since
the left child node is full. We want to insert intervals
in the lowest-level nodes as much as possible. This
will only be permitted if the start time of the interval
is greater than or equal to the start time of this node.
In the example in Figure 1, if an interval with a start
time of 50 needs to be inserted into the history, we
can place it in the leaf node. On the opposite, a range
with a start time of 20 cannot be placed there, so in
this case the interval we will placed in the root node.

Therefore, the root node used to store the intervals
overlap its two children. It is here that the second
assumption mentioned in the previous section comes
in. Since the intervals are usually short, the majority
of intervals enter the leaf nodes, and the root node
will not fill too quickly. This assumption is required
to obtain a large number of children nodes, and thus
a shallow tree.

If, as we hope, the leaf node is filled first, a new
leaf node will be added. As previously, we will close
the previous node with the last time it contains, and
assign this time as start time of the new node (Figure
1). For subsequent insertions, we choose between the
new leaf node and the root node.

The insertion process continues until one of two
things happen: the root node itself becomes ”full” in
terms of intervals, or it reaches its maximum allowed
number of children. In either case, we will close the
root node.

If it is not already done, we also close the most
recent leaf node with the same end time as its par-
ent. The next step is to add a new sibling to the
root node itself, and create a new parent root node.

5

Figure 1: Construction of the history tree

Whenever we create a new root node for the tree, we
immediately create a complete branch, down to the
leaf level. The start time of these new nodes, except
for the new root node, will all be the same, and equal
to the end time of the previous root node. We then
end up with a situation like in Figure 2.

When there is no longer any new interval to insert,
we simply point out that the history is completed.
The highest end time in the tree is used as the final
end time for all nodes in the right-most branch, and
the completed history tree is marked as ”closed”.

3.5 Queries

Once closed, the history tree may be the target of
queries to extract intervals at any timestamp. We
saw in the previous section that during its construc-
tion, only the rightmost branch can receive intervals
and all other nodes are fixed and will not be changed.
It would then be technically possible to run queries
on a tree that is not closed, as long as we limit our-
selves to the fixed part of the history.

The basic way to query the tree is to simply sup-
ply a time point. A search will be started from the
root node downwards, exploring only the branch that
can possibly contain the given time point. Within
each node, the algorithm iterates through all the in-
tervals and returns only those intersecting the target
time. If an input key is provided, then the algorithm
stops as soon as it meets an intersecting interval cor-
responding to the key of interest (we call this query
”ad-hoc”).

If no key is given, all intersecting intervals, with
their key/value pairs and bounding times, are re-
turned to the querying application (we call this a

”full query”). The ad-hoc queries return much less
information, but are much faster on average than
full queries. We will see in the next chapter the
differences in performance between the two types of
queries.

Figure 3 shows an example of a complete and closed
off Tree, on which we run a query for time t = 300.
In practice, the number of children per node is much
higher. Here, we limited ourselves to two or three
children to simplify the representation.

Figure 2: Root node is full (or max number of chil-
dren reached), adding a new root node and a new
branch

In the example shown in Figure 3, we assumed that
the tree receives a request to return the intervals at
time t = 300. The tree will explore the nodes shown
in gray in the figure to find the necessary information.

4 Experimental Results

All experiments were performed on an Intel Core
i7 920 @ 2.67GHz machine with 6 GB RAM using
data gathered from LTTng kernel tracer. The pro-
posed system is implemented as a Java library in the

6

Figure 3: Searching through the tree to get all inter-
vals intersecting t = 300

Eclipse Tracing and Monitoring Framework (TMF,
an Eclipse plugin part of the Linux Tools project 2).
The library is used to manage system states [13] ex-
tracted from LTTng kernel tracer [1] for analyzing
system runtime behavior. It has also been used to
manage common states for generating abstract events
[14] or handle system statistics [15].

4.1 Block sizes

The size of the blocks is configurable per tree.
Smaller blocks will be filled faster, so the number
of nodes and the number of levels in the tree will be
larger. Accordingly, the number of read operations
associated with a query will be larger. Larger blocks,
on the other hand, require more time for each read
operation and more processing to search for intersect-
ing intervals. The optimal value is thus not obvious.

Figure 4 shows the query time comparisons using
different block sizes: 16KB, 64KB, 256KB, 1MB and
4MB.

The block sizes of 16KB to 256KB definitely seem
to behave better for our traces. The 4MB block size
seems inappropriate; the number of intervals to scan
in each node becomes very large, which greatly slows
down the queries.

Figure 5 shows the average time for full queries
within very large inputs (for traces of 10 GB to 550
GB respectively). The test is conducted to evaluate
the scalability with respect to the size of input data

2http://www.eclipse.org/linuxtools/projectPages/

lttng/

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 2000 4000 6000 8000 10000 12000

T
im

e
 f
o
r

a
 f
u
ll

q
u
e
ry

 (
µ

s
)

Size of the original Trace (MB)

16 KB
64 KB

256 KB
1024 KB
4096 KB

Figure 4: Full query time using different block sizes

 0

 50

 100

 150

 200

 250

 10 100 1000 10000 100000 1e+06
Q

u
e
ry

 T
im

e
 (

m
s
)

Size of the original Trace (MB)

32 KB Blocks
1 MB Blocks
4 MB BlocKs

Figure 5: Full query time using very large input data

that the history tree can support, and also to evalu-
ate the query time for large input data. In the graph
shown in Figure 5, the X axis is on a logarithmic
scale. For the smallest traces, 32 KB blocks seem
to offer the best performance. When the trace size
exceeds 10 GB, however, 1 MB blocks are slightly
better. Furthermore, query times are still very rea-
sonable: about 150 ms for a full query and 2 ms for
an ad-hoc query.

4.2 Comparison with other data
structures

4.2.1 In-memory R-Tree

In this experiment, we compare our solution to R-
Trees. To do so, an in-memory implementation of a
R-Tree is selected. Also, we changed our solution to
store data in memory instead of disk to be able to
compare both solutions.

As can be seen in Figure 6, filling the R-Tree in
memory is much longer than the history tree. The

7

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

H
is

to
ry

 b
u
ild

 t
im

e
 (

s
)

Size of the original Trace (MB)

Full history tree
Particial history tree

Memory R−Tree

Figure 6: Comparison of construction time against
R-Tree

reason is that a high amount of tree re-balancing is re-
quired to build the R-Tree. Indeed, the construction
of the State History Tree benefits from the property
that the intervals arrive in sorted time order. How-
ever, this is not the case for more generic structures
like R-Tree, which must be constantly rebalanced.
Other experiments show that the in-memory query
time of the R-Tree is much better than our solution,
as shown in Figure 7.

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700

T
im

e
 f
o
r

a
 f
u
ll

q
u
e
ry

 (
µ

s
)

Size of the original Trace (MB)

Full history tree
Particial history tree

Memory R−Tree

Figure 7: Full query time, comparison of R-Tree and
History Tree

In summary, the use of an R-Tree for interval data
allows for very fast in-memory query time. Unfortu-
nately, in-memory operation severely limit the allow-
able history size, and the long construction time is
problematic.

4.3 PostGIS

The next comparison is to use a database for storing
the interval data. A ”spatial” database, like Post-
GIS (an extension to PostgreSQL), can store multi-

dimensional information. Moreover, this database
stores its files on disk, supporting much larger data
sets than the in-memory implementation of the pre-
vious experiment.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 30 40 50 60 70 80 90 100 110 120 130

S
iz

e
 o

f
th

e
 H

is
to

ty
 t

re
e

 (
M

B
)

Size of the original Trace (MB)

Full History Tree
PostGIS Database

77

225
344

820

2212

3300

Figure 8: Comparison of disk usage against Post-
greSQL/PostGIS

 0

 1000

 2000

 3000

 4000

 5000

 20 30 40 50 60 70 80 90 100 110 120 130

T
im

e
 f

o
r

a
 f

u
ll

q
u

e
ry

 (
m

s
)

Size of the original Trace (MB)

Full History Tree
PostGIS Database

0.37 2.99 8.55

990.90

2868.94

4339.61

Figure 9: Full query time, comparison of Post-
greSQL/PostGIS and History Tree

Figures 8 and 9 show the comparisons of disk space
usage and full query time between the two solutions.
While databases are generic mechanisms that can-
not be expected to provide better performance than
efficient special-purpose solutions, the maturity and
emphasis on performance of the database field would
suggest a modest penalty. It appears that for applica-
tions with such large data sets, the overhead imposed
by a generic database system remains very large, cre-
ating much larger storage files and resulting in queries
that cannot achieve the O(log n) behaviour of the
State History Tree.

8

5 Conclusion

In this paper, we presented the State History Tree,
an efficient data structure to store streaming interval
data. The data structure uses a disk-based format to
store the intervals and was tested for large data sets,
up to hundreds of gigabytes.

This solution is implemented in Java in the Eclipse
Tracing and Monitoring Framework, as a part of
Linux Tools Project 3, and is publicly available. It is
used to store and manage the system states (modeled
as interval data) gathered from large execution trace
files. The LTTng tracer is used to generate input
traces.

The evaluation of the proposed solution and its
comparison with other approaches like R-Tree and
PostgreSQL/PostGIS demonstrates the efficiency of
the method, in terms of construction time, memory
space usage as well as query access times.

References

[1] M. Desnoyers and M. Dagenais, “The lttng
tracer: A low impact performance and behavior
monitor for gnu/linux,” in Proceedings of the
Ottawa Linux Symposium, vol. 2006, Citeseer,
2006.

[2] M. De Berg, O. Cheong, and M. Van Kreveld,
Computational geometry: algorithms and
applications. Springer-Verlag New York Inc,
2008.

[3] A. Guttman, R-trees: a dynamic index
structure for spatial searching, vol. 14. ACM,
1984.

[4] T. Sellis, N. Roussopoulos, and C. Faloutsos,
“The r+-tree: A dynamic index for
multi-dimensional objects,” pp. 507–518, 1987.

[5] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger, The R*-tree: an efficient and robust
access method for points and rectangles, vol. 19.
ACM, 1990.

3www.eclipse.org\/linuxtools\/

[6] I. Kamel and C. Faloutsos, Hilbert R-tree: An
improved R-tree using fractals. Citeseer, 1994.

[7] M. Nascimento and J. Silva, “Towards
historical R-trees,” in Proceedings of the 1998
ACM symposium on Applied Computing,
pp. 235–240, ACM, 1998.

[8] D. Comer, “Ubiquitous B-tree,” ACM
Computing Surveys (CSUR), vol. 11, no. 2,
pp. 121–137, 1979.

[9] C. Ang and K. Tan, “The interval B-tree,”
Information Processing Letters, vol. 53, no. 2,
pp. 85–89, 1995.

[10] H. Kriegel, M. Pötke, and T. Seidl, “Managing
intervals efficiently in object-relational
databases,” in Proc. 26th Int. Conf. on Very
Large Databases (VLDB), pp. 407–418,
Citeseer, 2000.

[11] Y. Tao and D. Papadias, “The MV3R-Tree: A
spatio-temporal access method for timestamp
and interval queries,” in Proceedings of the 27th
VLDB Conference, 2001.

[12] L. Arge and J. S. Vitter, “Optimal external
memory interval management,” SIAM Journal
on Computing, vol. 32, no. 6, pp. 1488–1508,
2003.

[13] A. Montplaisir, “Stockage sur disque pour
acceès rapide d’ attributs avec intervalles de
temps,” Master’s thesis, Ecole polytechnique de
Montreal, 2011.

[14] N. Ezzati-Jivan and M. R. Dagenais, “A
stateful approach to generate synthetic events
from kernel traces,” Advances in Software
Engineering, vol. 2012, April 2012.

[15] N. Ezzati-Jivan and M. R. Dagenais, “A
framework to compute statistics of system
parameters from very large trace files,”
SIGOPS Oper. Syst. Rev., vol. 47, pp. 43–54,
Jan. 2013.

9

