

Monitoring System Calls for Anomaly Detection in Modern

Operating Systems

Shayan Eskandari, Wael Khreich, Syed Shariyar Murtaza

and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab

Concordia University, Montreal, QC, Canada

{s_eskand, wkhreich, smurtaza, abdelw}@ece.concordia.ca

Mario Couture
Software Analysis and Robustness Group

Defence Research and Development Canada

Valcartier, QC, Canada

mario.couture@drdc-rddc.gc.ca

Abstract

Host-based intrusion detection systems monitor systems

in operation for significant deviations from normal (and

healthy) behaviour. Many approaches have been proposed in

the literature. Most of them, however, do not consider even

the basic attack prevention mechanisms that are activated by

default on today’s many operating systems. Examples of such

mechanisms include Address Space Layout Randomization

and Data Execution Prevention. With such security methods

in place, attackers are forced to perform additional actions

to circumvent them. In this research, we conjecture that some

of these actions may require the use of additional system

calls. If so, one can trace such attacks to discover attack

patterns that can later be used to enhance the detection

power of anomaly detection systems. The purpose of this

short paper is to motivate the need to investigate the impact

of attack on system calls while trying to overcome these

prevention mechanisms.

Keywords: Host-Based Intrusion Detection Systems,

Address space layout randomization, data execution

prevention, software security and reliability.

1. Introduction

Anomalies are patterns in data that do not conform to the

expected normal behavior [1]. An anomaly detection system

(ADS) constructs a profile of expected normal behaviour

using data, collected over a period of normal (attack-free)

operation. During operation, an ADS looks for events that

deviate significantly from the normal profile. These

deviations are considered as anomalous activities. They can

be caused by attacks, program, or configuration errors.

Unlike signature-based detection techniques, which look for

patterns of known attacks, anomaly detection is capable of

detecting novel attacks, but suffers from high false alarm rate

[1, 2, 3].

Most anomaly detection systems monitor for significant

deviation by observing system calls–system calls provide a

gateway between user and kernel mode. The temporal order

of system calls used by a process to request kernel services

has been shown to be effective in describing normal process

behaviour (see [1]). Many research studies use system call

sequences to model normal behaviour of the system (see

[2][3] for examples). Modeling techniques vary to include

statistical models, machine learning, and data mining. A

good survey of host-based anomaly detection techniques is

presented in [1].

However, most existing techniques for detecting

anomalies at the system call level do not consider security

mechanisms, which are enabled by default on modern

operating systems [7]. These mechanisms include the

Address Space Layout Randomization (ASLR) [4, 6] and the

Data Execution Prevention (DEP) [8] techniques. ASLR

introduces randomness into memory addresses of libraries,

stack, etc., to prevent buffer memory corruption attacks. DEP

does not allow applications to execute from a writeable

memory region. Both security mechanisms are supported by

most operating systems including Linux and Windows.

These advances in prevention mechanisms have

challenged the attackers to evolve their techniques and create

more complex attacks. Although some defense strategies

have been proposed to address these complex attacks [7],

their impact on anomaly detection using system calls has not

been addressed yet. The main objective of this work is to

motivate the need to investigate the impact of these attacks –

aimed at bypassing the prevention mechanisms–at the system

call level (including, system call sequences, arguments, and

return values). The anticipated findings of this research (e.g.,

new pattern of attacks and execution of foreign system

calls) would help reduce the false alarm rate while

improving the detection accuracy of anomaly detection

systems based on system calls.

2. Escaping Security Mechanisms

To escape ASLR and DEP, attackers often resort to a

form of brute-force attack. The most common way is Return-

mailto:@ece.concordia.ca
mailto:couture@drdc-rddc.gc.ca

Oriented Programming such as return-to-libc [9]. In order to

use return-to-libc attacks, the attacker should first „guess‟ the

address of the functions in the libc library. This step is

usually done by a trial-and-error method known as brute-

forcing.

It is, however, possible to discover the libc address by

exploiting the forked child process memory as shown by

Shacham et al. [7]. While trying to guess the address of a libc

function (e.g., system(), usleep(), etc.), a wrong deduction

will crash the process and make it fork itself (if it set to

automatic restart such as network daemons). Since the forked

process would have the same address layout as its parent, the

attacker would continue brute-forcing until he or she finds

the correct memory address of the required libc function. For

example, having the address of system() function in libc

allows the attacker to execute any desired system command.

There are also other methods to bypass the prevention

security mechanisms such as stack juggling methods, return

into non-randomized memory (return to text, return to heap,

return to data, etc.) and other application specific techniques

[6].

3. Potential Impact on Anomaly Detection

The ways that attackers are forced to create new exploits

to overcome the defense mechanisms may have several

impacts at the system call level. For instance, brute-forcing

techniques will lead to a repetitive usage of system calls,

such as fork(), nanosleep() and system(). This frequent usage

could be detected as foreign system call anomaly or foreign

sequence anomaly (a classification of system call anomaly

types can be found in [5]). Other patterns may involve the

invocation of unusual system call arguments, for example

calling “system(/bin/bash)” within a particular process.

In other words, we need to work towards finding and

analyzing such anomalous patterns or behaviors at the

system call level to improve the anomaly detection

performance. A possible direction to follow is by conducting

a conceptual analysis of some core attacks, which overcome

the prevention mechanisms described above. The result could

be a taxonomy of attacks with their behavioural model

depicted. This would require static analysis of the attack

source code (if available) combined with excellent

knowledge of the kernel operations.

Another possible direction would be to execute attacks

and collect traces that would allow the analysis of the impact

of attacks on the system call sequences and arguments. The

challenge with this approach is to find a decent set of running

attacks that can be experimented with.

Acknowledgment

This research is supported partially by the Natural Sciences

and Engineering Research Council of Canada (NSERC),

DRDC (Defence R&D Canada), Valcartier, QC, Quebec,

Ericsson Canada.

4. References

[1]. S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution

of system-call monitoring,” In Proc. of the 2008 Annual

Computer Security Applications Conference, pp. 418-

430, 2008.

[2]. D. Gao, M. K. Reiter, and D. Song, “On gray-box

program tracking for anomaly detection,” In Proc. of the

13th conference on USENIX Security Symposium, pp. 1-

8, 2004.

[3]. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G.

Vigna, “Automating mimicry attacks using static binary

analysis,” In Proc. of the 14th conference on USENIX

Security Symposium, pp. 161–176, 2005.

 [4]. L. Lixin, J.E, Just, R. Sekar, "Address-Space

Randomization for Windows Systems," In Proc. of the

22nd Annual Computer Security Applications

Conference, pp. 329 - 338, 2006.

 [5]. R. Maxion and K. Tan, “Benchmarking anomaly-based

detection systems,” In Proc. of the 2000 International

Conference on Dependable Systems and Networks, pp.

623–630, 2000.

 [6]. T. Muller, “Aslr smack & laugh reference,” Presented at

the Seminar on Advanced Exploitation Techniques,

2008.

[7]. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N.

Modadugu, and D. Boneh, “On the effectiveness of

address-space randomization,” In Proc. of the 11th ACM

conference on Computer and communications security,

pp. 298–307, ACM, 2004.

[8] N. Stojanovski, M. Gusev, D. Gligoroski, S.J.

Knapskog, "Bypassing Data Execution Prevention on

MicrosoftWindows XP SP2," In Proc. of the 2
nd

International Conference on Availability, Reliability and

Security, pp.1222-1226, 2007.

[9] P. Chen,H. Xiao, X. Shen, X. Yin, B. Mao, L. Xie,

"DROP: Detecting Return-Oriented Programming

Malicious Code," In Proc. of the 5th International

Conference on Information Systems Security, pp 163-

177, 2009.

