
Multilevel Trace VisualizationMultilevel Trace Visualization

Presented by: Naser Ezzati Jivan
 Supervisor: Professor Michel Dagenais

DORSAL LAB

École Polytechnique, Montreal

2 /42

● Data store

– Linking the different layers
● Hierarchical visualization techniques

– LoD-based control flow diagram
● Label placement

– “Node-link + Treemap” visualization

Overview

3 /42

 How to explore and
understand ?

4 /42

Performance degradation

5 /42

How to model and visualize?

Unified View

6 /42

Challenges?

LTTng Trace Events

Statistics Cubes
Faults and Alerts

Synthetic Events
Semantic Events

Trace abstraction &
fault Identification

Linking different layers

1

2

3

7 /42

 How to create different levels of information?

LTTng Trace Events

Statistics Cubes
Faults and Alerts

Synthetic Events
Semantic Events

Data abstraction &
Fault Detection 1

1

Trace Abstraction & Fault
Detection

– Pattern matching

– Frequent pattern
mining

– Learning

● Concordia
● Laval University

8 /42

Statistics Cubes
Faults and Alerts

Synthetic Events
Semantic Events

Linking different layers

2

Relating the different levels enables:

● A multi-resolution analysis of the system under
study and a better comprehension.

● Following and digging into a detected problem to
find more details.

 How to link the different levels?2

9 /42

 How to link the different levels?2

State System: Horizontal Indexing

Hierarchical Linking: Vertical Indexing

● Compactness: the space efficiency of the data structure.
● Efficiency: the performance of query algorithms.
● Scalability: the possibility of supporting large traces.
● Flexibility: the possibility of supporting different types of hierarchy.

Data Store

10 /42

 How to link the different levels?2

Next Event Number
or

NULL

4/5

Next Event Number
or

NULL

Next Event Number
or

NULL
...

4/5 4/5

AttributeFirst Child Ptr
Number of

Children
End PtrLevel Start Ptr Pattern

244/526/86/81

Attribute
Number of

Events
Reserved End PtrLevel Start Ptr Pattern

2426/86/81 4/5

Data Structure:
● R-tree Part:

● Non-leaf Nodes:

● Leaf Nodes:

● LOD-Index

● Resource (attribute) Tree
● Pattern Tree: is a

hierarchy of patterns

11 /42

Each item consists of: (29)
– Level (1)

– Start ptr (6/8)

– End ptr (6/8)

– Number of children (2)

– Address of the first event in the
LOD index (4/5)

● An address is a combination of
block/offset address in the index file.

● With a 5 bytes address field, size
limit of the index file will be 1 TB.
That is relatively large

– Pointer to pattern (2)

– Attribute No (4)

– The “Start ptr”, “End ptr” and
the “Attribute No” fields form the
MBR (minimum bounding
rectangle) of each object.

 How to link the different levels?2

2 4 3 6 5 0 8 9 7

12 /42

 How to link the different levels?2

t1 t2t1

a b

t1 t2

13 /42

 How to visualize?3

Multiple Coordinated Views

14 /42

Control Flow Diagram is currently used in the TMF , LTTV and other
tools for representing:

– The different stats of a process.

– The function call sequences

15 /42

LOD-based Control Flow Diagram

16 /42

LOD-based Control Flow Diagram

17 /42

LOD-based Control Flow Diagram

18 /42

LOD-based Control Flow Diagram

19 /42

3

 How to visualize?3

Challenges:

– Drawing the objects in the
right level

– Auto label placement

– Aggregation
● Static (Abstraction)
● Dynamic (Visual

Aggregation)
– Resource aggregation
– Event aggregation

– Filtering
● Size of the event
● Priority

– Overlapping objects

20 /42

3

 How to visualize?3

Typical visualization steps:
● User selects an area of interest. The algorithm

displays the selected window, with a suitable choice
of the data level and labels. (high level information)

– Known scales in the online map system
● User may zoom in to get more data and detailed

information. The algorithm displays the area, and
presents the labels that were invisible at the previous
scale.

● User may zoom for further detail (kernel level) or even
the neighbouring areas.

● In the lowest level, the algorithm displays kernel level
data (e.g. page faults, interrupts and system calls and
so on).

21 /42

 How to visualize?3

Auto label placement

● Legibly

● No overlap!

– Other items & other labels
● Clear association of labels

with their items

● Fast Algorithm!

Item 1
Item 2

Item 2

Item 1

Item 1Item 2

22 /42

 How to visualize --- Auto label placement3

Three types:
● Point labeling

– Single events, very small states.

● Line labeling
– States, compound events.

● Area labeling
– Group of points and lines.

Open a File

Connection

/etc/xinetd.conf

23 /42

 How to visualize? --- Label placement3

General strategy

Since the size of the visible window and the scale
of data is not known in advance, it is not possible
to compute the right positions in advance!

● Generic algorithm:

– Compute various possible positions for each
item (rule-based)

– Select one position for each item
● No overlap

● It may be impossible to label all items (too small
or less-important)

– Dynamic or static aggregation

 label label

 label label

 label
 label

 label
 label

24 /42

 How to visualize? Label placement algorithm3

P4

P3

P2

P1

● Using graph theory

– Extract the items of
the visible window

– Find the label positions
for events of each
process

– Draw the conflict
graph

25 /42

 How to visualize? Label placement algorithm3

P4

P3

P2

P1

● Using graph theory

– Extract the items of
the visible window

– Find the label positions
for events of each
process

– Draw the conflict
graph

26 /42

 How to visualize? Label placement algorithm3

● Using graph theory

– Extract the items of
the visible window

– Find the label positions
for events of each
process

– Draw the conflict
graph

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

27 /42

 How to visualize? Label placement algorithm3

● Conflict graph

– Each possible label
position is a node

– Each edge shows an
intersection in the
positions

– There are edges between
each two nodes of the
same item.

– The problem is to find
the largest stable
(independent) set

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

28 /42

 How to visualize? Label placement algorithm3

● Conflict graph
– Each possible label position is a

node
– Each edge shows an intersection in

the positions
– There are edges between each two

nodes of the same item.
– The label placement is equal to

find the “maximum stable
(independent) set”

● NP_hard
● We try to find a good solution (maximal),

instead of the best one!

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

Stable (Independent) Set
is a subset of nodes, such that no two of nodes are
adjacent.

Maximal Stable (Independent) Set
is an independent set that is not a subset of any other
independent set. A largest maximal independent set is
called a maximum independent set.

29 /42

 How to visualize? Label placement algorithm3

Maximal stable
(independent) set

1. S = {}

2. for each node n{

3. if (n has no neighbor in S)

4. add n to S

5. }

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

30 /42

 How to visualize? Label placement algorithm3

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

Maximal stable
(independent) set

1. S = {}

2. for each node n{

3. if (n has no neighbor in S)

4. add n to S

5. }

31 /42

 How to visualize? Label placement algorithm3

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

Maximal stable
(independent) set

1. S = {}

2. for each node n{

3. if (n has no neighbor in S)

4. add n to S

5. }

32 /42

 How to visualize? Label placement algorithm3

P4

P3

P4

P3
close

close

close

close

sendsend

open

open

open

open

Maximal stable
(independent) set

1. S = {}

2. for each node n{

3. if (n has no neighbor in S)

4. add n to S

5. }

33 /42

 How to visualize? Label placement algorithm3

P4

P3

P4

P3
close

open

Maximal stable
(independent) set

1. S = {}

2. for each node n{

3. if (n has no neighbor in S)

4. add n to S

5. }

send

34 /42

 How to visualize?3

Aggregation
● Select the proper level to show in the view
● Static aggregation

– The annotation data structure that is created in
the abstraction and linking phase

– The size of the visible window and the scale of
data is not known in advance.

● Dynamic aggregation

– Try to dynamically aggregate the items and
resources

Ip:port

dns

dns request

Create socket connect

fd:3 fd=3

answer

Ip:port

35 /42

 How to visualize?3

Dynamic Aggregation
● When zooming out:

– Remove labels of less important items

– Put one label instead of a group of the
same items and resources.

● Replace with one aggregated label:

–Replace folder name for all files of
that folder

● When zooming in:

– Remove labels of items that go outside
the visible window

– Allow more labels

– Replace (or show together) the
aggregated items with their children

/etc/*

Read

read read

read read

/etc/file1 /etc/file2

/etc/*

/etc/file1/etc/file2

readread

36 /42

 How to visualize?3

Conflicts
● Conflict between labels

– e.g. Two adjacent events

– Label placement algorithm

– Dynamic aggregation
● Conflict between Operations

– e.g. Two overlapping “read file” abstract events.
● A process works with two files simultaneously.

– Label placement algorithm

– Dynamic aggregation
– Displacement

● Sort based on their start or end times

37 /42

Conclusion

LoD-based Control Flow Diagram
– Firstly shows an overview of the execution

● The highest level of the hierarchy
– Supports “Level of Details”

● In this diagram, users can zoom in and focus to get more
details

– Or zoom out to get an aggregated view

– Uses two kind of abstraction methods:
● Event & data abstraction (static aggregation)
● Visual abstraction (dynamic aggregation)

– Uses a link data structure to relate the different layers of
information together

– Uses label placement algorithm to place name of the items and
resources to make it easy to understand what is going on the
system execution

38 /42

 Node-link + Treemap

39 /42

Treemap Visualization

Other method to visualize
hierarchical data.

Example: to view data and usage
statistics from every virtual
machines in the system, broken
down in the same way?

– CPU usage of each VM
● CPU usage of each

process in the VM,
– each thread of that

process,
– Each CPU for the

selected thread
– ...

40 /42

Treemap Visualization

● Having a page showing hundreds of pie
charts?

● How would these pie charts relate to each
other?

41 /42

Treemap Visualization

● Represent a complex, hierarchical data as a set of
nested rectangles and in a relational view.

● The size of each rectangle is based on some
measure.

– Another measure, (e.g. time since the last
modification to a file) can be used to color each
rectangle.

H

F G

A CB ED

2 2 2 2 2

6 4

10
Level 1

Level 2

H

F G

A

B

C

D

E

Level 3

42 /42

Demo

Thank you
n.ezzati@polymtl.ca

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	And the result
	Slide 39
	Slide 40
	Slide 41
	Slide 42

