Run-time interrupts latency detection
in real-time systems

Julien Desfossez
Michel Dagenais

] December 2015
Ecole Polytechnique de Montreal

Latency-tracker

» Kernel module to track down latency problems
at run-time

» Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree
source code)

» Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

Usage

tracker = latency tracker create(threshold,
timeout, callback);

latency tracker event in(tracker,) ;
latency tracker event out (tracker,) ;
If the delay between the event in and event_out for the same IS

higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event out
takes too long to arrive (off-CPU profiling).

Implemented use-cases

Block layer latency
- Delay between block request issue and complete
Wake-up latency

- Delay between sched wakeup and sched switch
Network latency

IRQ handler latency

« System call latency
- Delay between the entry and exit of a system call
« Offcpu latency

- How long a process has been scheduled out

Performance optimizations

» Controlled memory allocation
* Lock-less per-cpu RCU free-list

» QOut-of-context reallocation of memory if
needed/enabled

« Kernel-ported lock-less userspace-rcu
hashtable

e Custom call _rcu thread to avoid the variable
side-effects of the built-in one

Tracking interrupts latency

« Start tracking when the kernel receives the

interrupt

 Compute the delay up to the moment when:

- The target tas
- The target tas

- The target tas
interrupt

K get scheduled in
K Informs the kernel it finished its work

K goes back to waiting for the next

» Launch a user-defined action on high latency

Tracking interrupts latency

* Work with the two main workloads:
— periodic (timers)
— aperiodic (hardware interrupts)

Interrupts critical path in the
mainline kernel

do_IRQ_entry

J

!

irq_handler_entry

J

!

softirq_raise

|

irq_handler_exit

do_IRQ_exit

—1

softirq_entry

sched _waking

~

[

softirq_exit

J

—1

sched_switch

)

Interrupts critical path in the
PREEMPT RT kernel

do_IRQ_entry

Y

irq_handler_entry

Y

irq_handler_exit

Y

sched _waking TRQ > sched_switch IRQ
v .) v .
do_IRQ_exit sched_waking —{ sched _switch]
r i v = i ~
softirq_raise —{ softirq_entry F---- { sched _waking
- J oy

Y

[softirq_exit

PREEMPT RT hardware interrupts critical path

Tracking state evolution

* The relevant information is known while processing
the chain

* Not a single matching entry/exit key
 Need to make the state changes in real-time

 Filter based on the target use-case:

- IRQ number

- SoftIRQ number

- Target PID/Procname

— Only real-time priority tasks

10

Online critical tree

* Tracking an interrupt up to the point where a
user-space task starts to run is usually a chain
(no branches)

» But if we track an interrupt until the target task
completes its work, there can be a lot of
branches

 Each call to sched waking or softirg_raise
creates a new branch in the chain

11

Online critical tree

* We stop the tracking when one chain matches
all the criteria

* \We only know which one at the end

SO we need to track everything and cleanup
as soon as possible to limit the overhead

12

Demos

e User inputs
e Jack realtime sound server

13

Overhead

e Early measurements
» 740ns per state change for keeping the state
* 0 state changes --> 4.4pus

» Additional overhead for keeping the textual
breakdown

14

Install it

apt—-get 1nstall git gcc make
linux—-headers—-generic

glt clone
https://github.com/jdesfossez/late
ncy tracker.git

cd latency tracker

make

15

Questions ?

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

