Efficient methods for kernel trace analysis
parallelization

POLYTECHNIQUE ¢

Fabien Reumont-Locke MONTREAL
Under the supervision of Prof. Michel Dagenais

_ LEGE
EN PREMIERE CLASSE

Presentation outline

Introduction and research objectives
Adapting the tools to parallel processing
Parallelization methods

Preliminary results

The road ahead and conclusion

LE GENIE
EN PREMIERE CLASSE

Parallel computing

Intel Xeon Phi - 64 cores
e Modern architectures allow higher 7 -

and higher levels of parallelism
e Already used in a lot of areas:

physics, mechanical engineering,

rendering

For example, finite element analysis

R T

Source: hitp:f sti-tech.comfimagesfimpell-a. Source: http://www.extremetech.com/wp-con}:gtluploads/ZO1 /04/Aubrey_lIsle_die-640x480.

gif POLYTECHNIQUE

Can we apply it to trace analysis?

LE GENIE
EN PREMIERE CLASSE

Research objectives

Does the use of parallel computing methods
allow for an acceleration of the analysis of
kernel traces, which is both efficient and
scalable?

The goal is to develop trace analysis parallelization methods that will:

a.
b.

Work for most existing analyses

Be efficient (provide considerable speedup over sequential
methods)

Be scalable (improved performance as number of parallel units
increases) PO onTRenr s

_ LE GENIE
EN PREMIERE CLASSE

Challenges of parallelization

Load balancing

Data partitioning

Problem Data Set

[wait | time ‘ task 0 H task 1 H task 2 H task 3 \

Source: https://computing.linl.gov/tutorials/parallel_comp/ Source: https://computing.linl.gov/tutorials/parallel_comp/
Locking and synchronisation Data dependencies
POLYTECHNIQUE
MONTREAL

_ LE GENIE
EN PREMIERE CLASSE

Choice of tools

e Trace Compass (formerly TMF) is the Eclipse-based tool for trace
analyses and visualizations
o Very complete framework, lots of infrastructure for reading traces,
analysing them and displaying the results
o Unfortunately, this also means lots of complexity, making it very
hard to experiment with parallelization
e babeltraceis a Clibrary that allows reading CTF traces
o "“Only” provides reading events from traces
o The simpler design lends itself better to parallelization

POLYTECHNIQUE
MONTREAL

_ LE GENIE
EN PREMIERE CLASSE

Adapting babeltrace to parallel analysis

e Babeltrace allows only one iterator per trace
o Temporary solution : create one context per thread, add trace to
each context
o Very long startup cost, since we have to parse metadata, create
structures, etc., for each thread
o Not viable when working with up to 64 cores
e Added support for multiple iterators per trace by cloning file streams
inside each iterator
e Then there was also the problem of performance...

_ LE GENIE
EN PREMIERE CLASSE

Use parallel processing to slow your application down!

Trace size 5,114,625 events Execution time for event counting
CPU on analysis AMD FX 9370
machine Eight-Core Processor

Time in ms

45000
40000
Performance gradually
35000
worsens as we add more
threads 30000
. 25000
Something is definitely
20000
wrong...
15000
10000
m -
0
1 2 4 8

Number of cores

LE GENIE
EN PREMIERE CLASSE

What Is happening?

D E CCOIld d Ul ap
|‘ H | |‘ “l || ||‘| | Samples: 50K of event 'cycles', Event count (approx.): 47407222222
[IEN (AN | 1/ | 49, 16% bpthread-2.19.50 pthread mutex tock |
+ pthread_mutex_lock

NEREERE

| |
E

- g_mutex_lock
| ‘ - 99.93% g_quark_from_string
- 79.43% DL_LOOKUp_derinition
l l [|” + 65.39% bt_lookup_integer
|| ‘ + 17.72% bt_lookup_enum

+ 16.89% bt_lookup_variant
+ 12.19% bt_new_definition_path
4.90% bt_append_scope_path
3.46% _array_definition_new
lttng-parallel- 1libpthread-2.19.so
lttng-parallel- [kernel.kallsyms]
lttng-parallel- 1ibglib-2.0.50.0.4002.0
lttng-parallel- [kernel.kallsyms]
F lttng-parallel- 1libpthread-2.19.so

[

[

[

[

[

Fut Fu. futl fut [IF fute futex Fut lttng-parallel- [kernel.kallsyms] [
lttng-parallel- 1libbabeltrace-ctf.so.1.0.0 [.

[

[

[

[

[

[

[

|

I:
g

+ +

pthread_mutex_unlock
_raw_spin_lock
g_mutex_get_impl
memcpy
__111_lock_wait
lttng_event_reserve

]
]
]
]
]
]
] ctf_pos_access_ok
]
]
]
]
]
]
]

_aligned_integer_read
g_private_get_impl

lttng-parallel- libbabeltrace-ctf.so.1.0.0
f lttng-parallel- 1ibglib-2.0.50.0.4002.0

fut F futex lttng-parallel- 1libc-2.19.so __GI___strcmp_ssse3
lttng-parallel- 1libglib-2.0.s50.0.4002.0 .] g_hash_table_lookup
G fu fute lttng-parallel- [kernel.kallsyms] k] lttng_event_commit
fFut FRFRIFRY NF B Futex lttng-parallel- [kernel.kallsyms] k] lttng_event_write
T Tt 3 GG lttng-parallel- 1libbabeltrace.so.1.0.0 .] generic_rw
UKEX lttng-parallel- libc-2.19.so0 . int malloc
Qua
0 g 0 . 0 g d g
Qua qua
g
0
PU ¢
0 a a U A
O . .. 3 q gLOD .
o OO qua qua 0 q g

After patching things up

Execution time for event counting

10000

e Added a thread-local o0
quark cache to prevent o0
global lock contention in o0
the glib e

e Each thread only queries ; ™
the global glib quark
hash table if it does not
have the quark in its oo
cache .

e Duplicates data, but the
tradeoff is worth it

POLYTECHNIQUE (¢ Sz,)
MONTREAL QM

_ LE GENIE
EN PREMIERE CLASSE

Per-stream data partitioning

e One stream per CPU on the analyzed machine
e Each CPU on the analyzing machine treats one stream

Time

o>
sveamo [[] e
sveam 1 [] e
Merge
s = —
s () —

e What about if there are less streams than CPUs?
e Synchronization problems when causality between events (e.g.
migrated process)
POLYTECHNIQUE ¢

We need to split “vertically”, i.e. by time MONTREAL

LE GENIE
EN PREMIERE CLASSE

Per-time range partitioning

Time

>

e Split the trace evenly across streams by aene —
timestamp | —

e Each CPU analyzes all the events — | |
between two timestamps sweama | |

e Load balancing: uneven event density

e Data dependency: some events are l—' H H
dependent on prior events (oo J{ orur J{ ome J[o |

o E.g. which system call just exited?

These two threads slow

down the analysis POLYTECHNIQUE
MONTREAL S

_ LE GENIE
EN PREMIERE CLASSE

Using CTF packet index to balance load

e CTF traces have a packet index that we can use to balance the load
e We assume that packet size is proportional to the number of events
e Other advantages:
o Seeks on packet frontiers are cheaper than within packets
e Disadvantages:
o Works best only if trace has a lot of packets (not always the case)
o At the moment only works on single-stream traces

POLYTECHNIQUE (¢ Sz,)
MONTREAL

_ LE GENIE
EN PREMIERE CLASSE

Breaking data dependencies

e Most analyses keep a running “current state” containing all the
necessary data

e This current state is also queried to know, for example, which system
call was running

sched_switch

e Butwhat if we don’t know
some of the current state?
e We rely on the fact that the eyeread ext_syscll

ST I I A A

unknown state lasts only ContextThread
until the next event is read
o Ssys_*->syscall

Current Syscall ={
name: sys_read,
start= ...,
fd=.}

Merge

Context Thread 2
Unknown Syscall ={
end=..,
return value = ... }

o exit_syscall -> user

Merged Syscall ={

name: sys_read, POLYTECHNIQUE
start=..., MONTREAL
end=.., N

fd=..,
return value = ..}

LE GENIE
EN PREMIERE CLASSE

State propagation

sched_switch

e Values dependent on unknown
state are kept in each chunk’s

O I T

context S || conewmusas | | Sonwamnga,
o e.g. unknown syscall, or e R Lt B e
syscall in unknown current oS
thread Cummora
e State is propagated forward in =)
time at the merge phase | o
e Interms of implementation, this simply means (
handling unknown state + adding an additional e =

merge method to allow merging the contexts

LE GENIE
EN PREMIERE CLASSE

Test analyses

Result of count analysis Result of I/O analysis

Number of events 44,001,071 Syscall I/0 Read

Result of cpu analysis

CPU Percentage time

CPU
CPU
CPU
CPU

3
1
2
4
5}
5
6
7

redis-server (1357)
redis-benchmark (3486)
lttng-consumerd (3454)
redis-server (3487)

indicator-multi (2713)
gnome-terminal (2877)

Percentage time
98.66

Process
lttng-consumerd (6352)
redis-server (9758)
timeout (12019)
indicator-multi (2494)
lttng-consumerd (6351)
dbus-daemon (2167)
Chrome_IOThread (3420)
BrowserBlocking (3426)
Xorg (1411)
upstart-dbus-br (2193)

lttng-consumerd (6352)
redis-server (12020)
timeout (12019)
redis-server (9758)
lttng-consumerd (6351)
dbus-daemon (2167)
Chrome_ChildIOT (4010)
gnome-terminal (10876)
gdbus (2504)

gdbus (2418)

Size

1.27 GB
31.07 MB
3.45 MB
397.07 KB
344 KB
58.12 KB
58.1 KB
43.04 KB
35.75 KB

1.27 GB
39.84 MB
31.07 MB
3.45 MB
344 KB

92.91 KB
54.14 KB
27.32 KB
27.1 KB
19.38 KB

Implemented some of the Python analyses made by Julien Desfossez

POLYTECHNIQUE
MONTREAL

_ LE GENIE
EN PREMIERE CLASSE

Results - Event counting

Trace size 17,358,022 events

CPU on analysis 4 x AMD Opteron 6272

machine Sixteen-Core Processor
Serial time 36.7s
Parallel time 45s
(best) w/ 26 threads

Count the number of events
in a trace

Maximal acceleration; ~8.2x
Worst-case scenario:

Lots of I/0 for little CPU
work

Time (ms)

45000

35000

25000

20000

15000

10000

Execution times for event counting

* * 0’

. * *

SV RIRIC OIS PSP

o ® G0 ¢ ¢ 6 e% % e, o

*%e .Q’O.Q
.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Number of cores

0

Acceleration

W time (ms)
acceleration

Results - CPU analysis

Trace size

44,001,071 events

CPU on analysis

4 x AMD Opteron 6272

machine Sixteen-Core Processor
Serial time 66.3s
Parallel time 7.4s
(best) w/ 32 cores

Measure the proportion of
CPU active vs idle + CPU
usage per thread

Maximal acceleration: ~9x

Only uses scheduling
events (sched_switch)

Very simple analysis

Time (ms)

70000

20000

10000

Execution times for CPU analysis

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Number of cores

10

©

[

0

Acceleration

Etime
acceleration

Results - 10 analysis

Trace size 17,358,022 events

CPU on analysis 4 x AMD Opteron 6272

machine Sixteen-Core Processor
Serial time 80.3s
Parallel time 6.0s
(best) w/ 48 cores

Measure syscall read/write
I/0 per thread

Maximal acceleration: ~13.3x

Uses I/0 syscalls (sys_read,
sys_write, sys_splice, etc.)

Slight increase in complexity
brings much better scaling

Time (ms)

100000

70000

10000

Execution times for 1/O analysis

16

14
00e o° * o *
0t 000 0 %7 0% 00 4,000 %
® ¢ .
* 12

L 2 4 10

LY 4 6
*

4

*
*
""l|||||||||||||||||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Number of cores

Acceleration

M time (ms)
#© acceleration

The road ahead

e Short-term goals
o Apply to more types of analyses, such as current state, memory

o Better load balancing through a hybrid per-stream/per-time
range partitioning
e Medium-term goals
o Add support for parallelizing the XML state system analysis
o Qutput into State History Tree
e Long-term goals
o Distributed analysis
o Live tracing analysis

POLYTECHNIQUE (¢ Sz,)
MONTREAL

_ LE GENIE
EN PREMIERE CLASSE

Conclusion

Research question:

Does the use of parallel computing methods
allow for an acceleration of the analysis of
kernel traces, which is both efficient and

scalable?

The preliminary results seem to indicate that parallel
processing is a viable way to achieve better, more
scalable performances for the analysis of large traces.

POLYTECHNIQUE ¢ T)
MONTREAL N

_ LE GENIE
EN PREMIERE CLASSE

One more thing..

Execution times for 1/0O analysis

W time (s)

Time (s)

200

100

YTECHNIQUE

——————————— MONTR EAL
python serial c++ parallel c++

LE GENIE
EN PREMIERE CLASSE

Thank you!

Questions?

POLYTECHNIQUE
MONTREAL

LE GENIE
EN PREMIERE CLASSE

