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Parallel computing

● Modern architectures allow higher 
and higher levels of parallelism

● Already used in a lot of areas: 
physics, mechanical engineering, 
rendering

Source: http://www.extremetech.com/wp-content/uploads/2012/04/Aubrey_Isle_die-640x480.
jpg

Intel Xeon Phi - 64 cores

Can we apply it to trace analysis?

Source: http://www.sti-tech.com/images/impell-a.
gif

For example, finite element analysis



Research objectives

The goal is to develop trace analysis parallelization methods that will:
a. Work for most existing analyses
b. Be efficient (provide considerable speedup over sequential 

methods)
c. Be scalable (improved performance as number of parallel units 

increases)

Does the use of parallel computing methods 
allow for an acceleration of the analysis of 
kernel traces, which is both efficient and 
scalable?



Challenges of parallelization

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Load balancing

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Data partitioning

Locking and synchronisation Data dependencies



Choice of tools

● Trace Compass (formerly TMF) is the Eclipse-based tool for trace 
analyses and visualizations
○ Very complete framework, lots of infrastructure for reading traces, 

analysing them and displaying the results
○ Unfortunately, this also means lots of complexity, making it very 

hard to experiment with parallelization
● babeltrace is a C library that allows reading CTF traces

○ “Only” provides reading events from traces
○ The simpler design lends itself better to parallelization 



Adapting babeltrace to parallel analysis

● Babeltrace allows only one iterator per trace
○ Temporary solution : create one context per thread, add trace to 

each  context
○ Very long startup cost, since we have to parse metadata, create 

structures, etc., for each thread
○ Not viable when working with up to 64 cores

● Added support for multiple iterators per trace by cloning file streams 
inside each iterator

● Then there was also the problem of performance...



Use parallel processing to slow your application down!

Performance gradually 
worsens as we add more 
threads

Something is definitely 
wrong...

Trace size 5,114,625 events

CPU on analysis 
machine

AMD FX 9370 
Eight-Core Processor



In glib/gquark.c ->

What is happening?

perf record --call-graph



After patching things up

● Added a thread-local 
quark cache to prevent 
global lock contention in 
the glib

● Each thread only queries 
the global glib quark 
hash table if it does not 
have the quark in its 
cache

● Duplicates data, but the 
tradeoff is worth it



Per-stream data partitioning

● One stream per CPU on the analyzed machine
● Each CPU on the analyzing machine treats one stream

● What about if there are less streams than CPUs?
● Synchronization problems when causality between events (e.g. 

migrated process)
We need to split “vertically”, i.e. by time

Time



Per-time range partitioning

● Split the trace evenly across streams by 
timestamp

● Each CPU analyzes all the events 
between two timestamps

● Load balancing: uneven event density
● Data dependency: some events are 

dependent on prior events
○ E.g. which system call just exited?

Time

These two threads slow 
down the analysis



Using CTF packet index to balance load

● CTF traces have a packet index that we can use to balance the load
● We assume that packet size is proportional to the number of events
● Other advantages:

○ Seeks on packet frontiers are cheaper than within packets
● Disadvantages:

○ Works best only if trace has a lot of packets (not always the case)
○ At the moment only works on single-stream traces



Breaking data dependencies

● But what if we don’t know 
some of the current state?

● We rely on the fact that the 
unknown state lasts only 
until the next event is read 
○ sys_* -> syscall 
○ exit_syscall -> user

● Most analyses keep a running “current state” containing all the 
necessary data

● This current state is also queried to know, for example, which system 
call was running



State propagation

● Values dependent on unknown 
state are kept in each chunk’s 
context
○ e.g. unknown syscall, or 

syscall in unknown current 
thread

● State is propagated forward in 
time at the merge phase

● In terms of implementation, this simply means 
handling unknown state + adding an additional 
merge method to allow merging the contexts 



Test analyses

Implemented some of the Python analyses made by Julien Desfossez



Results - Event counting

Trace size 17,358,022 events

CPU on analysis 
machine

4 x AMD Opteron 6272 
Sixteen-Core Processor

Serial time 36.7 s

Parallel time 
(best)

4.5 s 
w/ 26 threads

Count the number of events 
in a trace

Maximal acceleration: ~8.2x

Worst-case scenario:
Lots of I/O for little CPU 
work



Results - CPU analysis

Trace size 44,001,071 events

CPU on analysis 
machine

4 x AMD Opteron 6272 
Sixteen-Core Processor

Serial time 66.3 s

Parallel time 
(best)

7.4 s
w/ 32 cores

Measure the proportion of 
CPU active vs idle + CPU 
usage per thread

Maximal acceleration: ~9x

Only uses scheduling 
events (sched_switch)

Very simple analysis



Results - IO analysis

Measure syscall read/write 
I/O per thread

Maximal acceleration: ~13.3x

Uses I/O syscalls (sys_read, 
sys_write, sys_splice, etc.)

Slight increase in complexity 
brings much better scaling

Trace size 17,358,022 events

CPU on analysis 
machine

4 x AMD Opteron 6272 
Sixteen-Core Processor

Serial time 80.3 s

Parallel time
(best)

6.0 s 
w/ 48 cores



The road ahead

● Short-term goals
○ Apply to more types of analyses, such as current state, memory
○ Better load balancing through a hybrid per-stream/per-time 

range partitioning
● Medium-term goals

○ Add support for parallelizing the XML state system analysis
○ Output into State History Tree

● Long-term goals
○ Distributed analysis
○ Live tracing analysis



Conclusion

The preliminary results seem to indicate that parallel 
processing is a viable way to achieve better, more 
scalable performances for the analysis of large traces.

Research question:
Does the use of parallel computing methods 
allow for an acceleration of the analysis of 
kernel traces, which is both efficient and 
scalable?



One more thing...



Thank you!

Questions?


