
Fabien Reumont-Locke
Under the supervision of Prof. Michel Dagenais

Efficient methods for kernel trace analysis
parallelization

I. Introduction and research objectives
II. Adapting the tools to parallel processing

III. Parallelization methods
IV. Preliminary results
V. The road ahead and conclusion

Presentation outline

Parallel computing

● Modern architectures allow higher
and higher levels of parallelism

● Already used in a lot of areas:
physics, mechanical engineering,
rendering

Source: http://www.extremetech.com/wp-content/uploads/2012/04/Aubrey_Isle_die-640x480.
jpg

Intel Xeon Phi - 64 cores

Can we apply it to trace analysis?

Source: http://www.sti-tech.com/images/impell-a.
gif

For example, finite element analysis

Research objectives

The goal is to develop trace analysis parallelization methods that will:
a. Work for most existing analyses
b. Be efficient (provide considerable speedup over sequential

methods)
c. Be scalable (improved performance as number of parallel units

increases)

Does the use of parallel computing methods
allow for an acceleration of the analysis of
kernel traces, which is both efficient and
scalable?

Challenges of parallelization

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Load balancing

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Data partitioning

Locking and synchronisation Data dependencies

Choice of tools

● Trace Compass (formerly TMF) is the Eclipse-based tool for trace
analyses and visualizations
○ Very complete framework, lots of infrastructure for reading traces,

analysing them and displaying the results
○ Unfortunately, this also means lots of complexity, making it very

hard to experiment with parallelization
● babeltrace is a C library that allows reading CTF traces

○ “Only” provides reading events from traces
○ The simpler design lends itself better to parallelization

Adapting babeltrace to parallel analysis

● Babeltrace allows only one iterator per trace
○ Temporary solution : create one context per thread, add trace to

each context
○ Very long startup cost, since we have to parse metadata, create

structures, etc., for each thread
○ Not viable when working with up to 64 cores

● Added support for multiple iterators per trace by cloning file streams
inside each iterator

● Then there was also the problem of performance...

Use parallel processing to slow your application down!

Performance gradually
worsens as we add more
threads

Something is definitely
wrong...

Trace size 5,114,625 events

CPU on analysis
machine

AMD FX 9370
Eight-Core Processor

In glib/gquark.c ->

What is happening?

perf record --call-graph

After patching things up

● Added a thread-local
quark cache to prevent
global lock contention in
the glib

● Each thread only queries
the global glib quark
hash table if it does not
have the quark in its
cache

● Duplicates data, but the
tradeoff is worth it

Per-stream data partitioning

● One stream per CPU on the analyzed machine
● Each CPU on the analyzing machine treats one stream

● What about if there are less streams than CPUs?
● Synchronization problems when causality between events (e.g.

migrated process)
We need to split “vertically”, i.e. by time

Time

Per-time range partitioning

● Split the trace evenly across streams by
timestamp

● Each CPU analyzes all the events
between two timestamps

● Load balancing: uneven event density
● Data dependency: some events are

dependent on prior events
○ E.g. which system call just exited?

Time

These two threads slow
down the analysis

Using CTF packet index to balance load

● CTF traces have a packet index that we can use to balance the load
● We assume that packet size is proportional to the number of events
● Other advantages:

○ Seeks on packet frontiers are cheaper than within packets
● Disadvantages:

○ Works best only if trace has a lot of packets (not always the case)
○ At the moment only works on single-stream traces

Breaking data dependencies

● But what if we don’t know
some of the current state?

● We rely on the fact that the
unknown state lasts only
until the next event is read
○ sys_* -> syscall
○ exit_syscall -> user

● Most analyses keep a running “current state” containing all the
necessary data

● This current state is also queried to know, for example, which system
call was running

State propagation

● Values dependent on unknown
state are kept in each chunk’s
context
○ e.g. unknown syscall, or

syscall in unknown current
thread

● State is propagated forward in
time at the merge phase

● In terms of implementation, this simply means
handling unknown state + adding an additional
merge method to allow merging the contexts

Test analyses

Implemented some of the Python analyses made by Julien Desfossez

Results - Event counting

Trace size 17,358,022 events

CPU on analysis
machine

4 x AMD Opteron 6272
Sixteen-Core Processor

Serial time 36.7 s

Parallel time
(best)

4.5 s
w/ 26 threads

Count the number of events
in a trace

Maximal acceleration: ~8.2x

Worst-case scenario:
Lots of I/O for little CPU
work

Results - CPU analysis

Trace size 44,001,071 events

CPU on analysis
machine

4 x AMD Opteron 6272
Sixteen-Core Processor

Serial time 66.3 s

Parallel time
(best)

7.4 s
w/ 32 cores

Measure the proportion of
CPU active vs idle + CPU
usage per thread

Maximal acceleration: ~9x

Only uses scheduling
events (sched_switch)

Very simple analysis

Results - IO analysis

Measure syscall read/write
I/O per thread

Maximal acceleration: ~13.3x

Uses I/O syscalls (sys_read,
sys_write, sys_splice, etc.)

Slight increase in complexity
brings much better scaling

Trace size 17,358,022 events

CPU on analysis
machine

4 x AMD Opteron 6272
Sixteen-Core Processor

Serial time 80.3 s

Parallel time
(best)

6.0 s
w/ 48 cores

The road ahead

● Short-term goals
○ Apply to more types of analyses, such as current state, memory
○ Better load balancing through a hybrid per-stream/per-time

range partitioning
● Medium-term goals

○ Add support for parallelizing the XML state system analysis
○ Output into State History Tree

● Long-term goals
○ Distributed analysis
○ Live tracing analysis

Conclusion

The preliminary results seem to indicate that parallel
processing is a viable way to achieve better, more
scalable performances for the analysis of large traces.

Research question:
Does the use of parallel computing methods
allow for an acceleration of the analysis of
kernel traces, which is both efficient and
scalable?

One more thing...

Thank you!

Questions?

