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Presentation outline



Parallel computing

More and more cores being traced
More and more trace data being 
generated
Trace analysis is still single-threaded

The gap between the amount of traced 
data and the analysis speed is ever-
widening

Source: http://www.extremetech.com/wp-content/uploads/2012/04/Aubrey_Isle_die-640x480.
jpg

Intel Xeon Phi - 64 cores



Research objectives

The goal is to develop trace analysis parallelization methods that will:
a. Work for most existing analyses
b. Be efficient (provide considerable speedup over sequential 

methods)
c. Be scalable (improved performance as number of parallel units 

increases)

Do parallel computing methods allow for a 
scalable acceleration of kernel trace analysis?



Challenges of parallelization

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Load balancing

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Data partitioning

Locking and synchronisation Data dependencies



Adapting babeltrace to parallel analysis

● Added support for multiple iterators per trace by cloning file streams 
inside each iterator

● Added thread-local quark cache to prevent contention on hash-table 
access



Data partitioning

Time Time

Per-stream? Per-time range?

Both suffer from balancing problems!

● Fewer streams than available processors
● Some streams contain more data than the others
● Trace data unevenly distributed within the time range 



Hybrid packet-driven partitioning

● CTF traces have a packet index that we can use to balance the load
● We assume that packet size is proportional to the number of events
● Walk packet index, accumulating packets until a certain threshold

Stream 
index

CPU 0 CPU 1 CPU 2 CPU 3



Breaking data dependencies

● But what if we don’t know 
some of the current state?

● We rely on the fact that the 
unknown state lasts only 
until the next event is read 
○ sys_* -> syscall 
○ exit_syscall -> user

● Most analyses keep a running “current state” containing all the 
necessary data

● This current state is also queried to know, for example, which system 
call was running



State propagation

● Values dependent on unknown 
state are kept in each chunk’s 
context
○ e.g. unknown syscall, or 

syscall in unknown current 
thread

● State is propagated forward in 
time at the merge phase

● In terms of implementation, this simply means 
handling unknown state + adding an additional 
merge method to allow merging the contexts 



Notes on hybrid balancing

● Hybrid balancing adds something else to worry about: migrations
● This is solved by keeping track of process migrations and merging in 

the same way as described before

For example:

In blue are continuous executions of a process on a processor
Arrows represent migrations and dependencies



Merging algorithm

Sort by start time
Only merge until shortest chunk end 

time



Trace analysis: I/O bound?

● If trace decoding (i.e. babeltrace) was 
to be made faster, would trace analysis 
become I/O bound?

● Simulate execution using simple 
program with tweakable params
○ Amount of CPU work (“iterations”)
○ Size of mmap’d chunks
○ Prefaulting, etc.

● Allows to simulate with various:
○ Hardware
○ CPU efficiency of analysis
○ I/O efficiency of analysis

threadRoutine(chunk_size, chunk_offset, file) {
 buffer = mmap(chunk_size, chunk_offset, file);
 for (i = 0; i < chunk_size; i += PAGE_SIZE) {
   sum += buffer[i];
   /* do some useless work */
   for (j = 0; j < ITERATIONS; j++) {
     sum++;
   }
 }
 munmap(buffer);
 return sum;
}

Test CPU : 4 x AMD Opteron 6272 
Sixteen-Core Processor



Concurrent memory operations

mm->mmap_sem serializes memory operations 
(mmap, munmap, page faults)

Solution: single thread does mmap/munmap in a 
pipeline



Test hardware - I/O

SATA Hard Disk Drive
● ~135 MBps sequential read

SATA Solid State Drive
● ~250 MBps sequential read

Intel P3700 PCIe SSD
● ~1145 MBps sequential read
● (yes, those are megabytes)



Parallel Efficiency

For a program with 
throughput similar to 
babeltrace (no analysis):
● 60% linear speedup 

with 8 threads on HDD 
(x5 speedup)

● 70% linear speedup 
with 16 threads on SSD 
(x11 speedup)

● 63% linear speedup 
with 64 threads on 
PCIe SSD (x40 
speedup)





Test analyses

Implemented some of the Python analyses made by Julien Desfossez





Speedup for analyses

Analysis Serial time in ms Parallel time in ms 
for 64 threads

Speedup

count 15990 1534 10.42

cpu 17622 1790 9.85

io 68584 3912 17.53

Trace info: execution of Redis benchmark on 8-core machine
Trace size: 267MB
Trace events: 6,915,790



Conclusion

● Parallel processing is a viable way to achieve better, 
more scalable performance for the analysis of large 
traces.

● Parallelization will remain relevant as trace decoding 
improves, especially with recent high-performance 
disk hardware.

● Parallelizing for 64 cores is very different from 
parallelizing for 8 cores!



The road ahead

● Short-term goals
○ Pipeline babeltrace I/O
○ Implement other analyses, such as current state, memory

● Medium-term goals
○ Add support for parallelizing the XML state system analysis
○ Output into State History Tree

● Long-term goals
○ Distributed analysis
○ Live tracing analysis



One more thing...



Thank you!

Questions?


