Efficient methods for kernel trace analysis parallelization

Fabien Reumont-Locke
Under the supervision of Prof. Michel Dagenais
Presentation outline

I. Introduction and research objectives
II. Parallel Solution
 A. Adapting the tools to parallel processing
 B. Data partitioning
 C. Resolving data dependencies
III. Experimental Results
 A. Parallel memory and I/O operations
 B. Performance and scaling
IV. The road ahead and conclusion
Parallel computing

More and more cores being traced
More and more trace data being generated
Trace analysis is still single-threaded

The gap between the amount of traced data and the analysis speed is ever-widening

Source: http://www.extremetech.com/wp-content/uploads/2012/04/Aubrey_isle_die-640x480.jpg
The goal is to develop trace analysis parallelization methods that will:

a. Work for most existing analyses
b. Be efficient (provide considerable speedup over sequential methods)
c. Be scalable (improved performance as number of parallel units increases)

Do parallel computing methods allow for a scalable acceleration of kernel trace analysis?
Challenges of parallelization

Load balancing

Data partitioning

Locking and synchronisation

Data dependencies

A depends on B depends on C

Source: https://computing.llnl.gov/tutorials/parallel_comp/
Adapting babeltrace to parallel analysis

- Added support for multiple iterators per trace by cloning file streams inside each iterator
- Added thread-local quark cache to prevent contention on hash-table access
Data partitioning

Both suffer from balancing problems!

- **Fewer streams** than available processors
- Some streams contain **more data** than the others
- Trace data **unevenly distributed** within the time range
Hybrid packet-driven partitioning

- CTF traces have a packet index that we can use to balance the load
- We assume that packet size is proportional to the number of events
- Walk packet index, accumulating packets until a certain threshold
Breaking data dependencies

- Most analyses keep a running “current state” containing all the necessary data.
- This current state is also queried to know, for example, which system call was running.
- But what if we don’t know some of the current state?
- We rely on the fact that the unknown state lasts only until the next event is read:
 - sys_* -> syscall
 - exitSyscall -> user
State propagation

- Values dependent on unknown state are kept in each chunk’s context
 - e.g. unknown syscall, or syscall in unknown current thread
- State is propagated forward in time at the merge phase
- In terms of implementation, this simply means handling unknown state + adding an additional *merge* method to allow merging the contexts
Notes on hybrid balancing

- Hybrid balancing adds something else to worry about: migrations
- This is solved by keeping track of process migrations and merging in the same way as described before

For example:

In blue are continuous executions of a process on a processor
Arrows represent migrations and dependencies
Merging algorithm

Sort by start time
Only merge until shortest chunk end
Trace analysis: I/O bound?

- If trace decoding (i.e. babeltrace) was to be made faster, would trace analysis become I/O bound?
- Simulate execution using simple program with tweakable params
 - Amount of CPU work (“iterations”)
 - Size of mmap’d chunks
 - Prefaulting, etc.
- Allows to simulate with various:
 - Hardware
 - CPU efficiency of analysis
 - I/O efficiency of analysis

```c
threadRoutine(chunk_size, chunk_offset, file) {
    buffer = mmap(chunk_size, chunk_offset, file);
    for (i = 0; i < chunk_size; i += PAGE_SIZE) {
        sum += buffer[i];
        /* do some useless work */
        for (j = 0; j < ITERATIONS; j++) {
            sum++;
        }
    }
    munmap(buffer);
    return sum;
}
```

Test CPU: 4 x AMD Opteron 6272
Sixteen-Core Processor
Concurrent memory operations

\texttt{mm->mmap_sem} serializes memory operations (\texttt{mmap}, \texttt{munmap}, page faults)

Solution: single thread does \texttt{mmap/munmap} in a pipeline
Test hardware - I/O

SATA Hard Disk Drive
- ~135 MBps sequential read

SATA Solid State Drive
- ~250 MBps sequential read

Intel P3700 PCIe SSD
- ~1145 MBps sequential read
- (yes, those are megabytes)
Parallel Efficiency

For a program with throughput similar to babeltrace (no analysis):

- 60% linear speedup with 8 threads on HDD (x5 speedup)
- 70% linear speedup with 16 threads on SSD (x11 speedup)
- 63% linear speedup with 64 threads on PCIe SSD (x40 speedup)
Test analyses

Result of count analysis

Number of events: 44,001,071

Result of cpu analysis

<table>
<thead>
<tr>
<th>CPU</th>
<th>Percentage time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 3</td>
<td>71.80</td>
</tr>
<tr>
<td>CPU 1</td>
<td>64.21</td>
</tr>
<tr>
<td>CPU 2</td>
<td>29.18</td>
</tr>
<tr>
<td>CPU 4</td>
<td>27.56</td>
</tr>
<tr>
<td>CPU 6</td>
<td>26.81</td>
</tr>
<tr>
<td>CPU 5</td>
<td>13.54</td>
</tr>
<tr>
<td>CPU 6</td>
<td>13.44</td>
</tr>
<tr>
<td>CPU 7</td>
<td>4.65</td>
</tr>
</tbody>
</table>

Result of I/O analysis

Syscall I/O Read

<table>
<thead>
<tr>
<th>Process</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>lttng-consumerd (6352)</td>
<td>1.27 GB</td>
</tr>
<tr>
<td>redis-server (9758)</td>
<td>31.07 MB</td>
</tr>
<tr>
<td>timeout (12019)</td>
<td>3.45 MB</td>
</tr>
<tr>
<td>indicator-multi (2494)</td>
<td>397.07 KB</td>
</tr>
<tr>
<td>lttng-consumerd (6351)</td>
<td>344 KB</td>
</tr>
<tr>
<td>dbus-daemon (2167)</td>
<td>58.12 KB</td>
</tr>
<tr>
<td>Chrome_IOThread (3420)</td>
<td>58.1 KB</td>
</tr>
<tr>
<td>BrowserBlocking (3426)</td>
<td>43.04 KB</td>
</tr>
<tr>
<td>Korg (1411)</td>
<td>35.75 KB</td>
</tr>
<tr>
<td>upstart-dbus-br (2193)</td>
<td>31.5 KB</td>
</tr>
</tbody>
</table>

Syscall I/O Write

<table>
<thead>
<tr>
<th>Process</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>lttng-consumerd (6352)</td>
<td>1.27 GB</td>
</tr>
<tr>
<td>redis-server (12026)</td>
<td>39.84 MB</td>
</tr>
<tr>
<td>timeout (12019)</td>
<td>31.07 MB</td>
</tr>
<tr>
<td>redis-server (9758)</td>
<td>3.45 MB</td>
</tr>
<tr>
<td>lttng-consumerd (6351)</td>
<td>344 KB</td>
</tr>
<tr>
<td>dbus-daemon (2167)</td>
<td>92.91 KB</td>
</tr>
<tr>
<td>Chrome_Child10 (4010)</td>
<td>54.14 KB</td>
</tr>
<tr>
<td>gnome-terminal (10876)</td>
<td>27.32 KB</td>
</tr>
<tr>
<td>gdbus (2504)</td>
<td>27.1 KB</td>
</tr>
<tr>
<td>gdbus (2418)</td>
<td>19.38 KB</td>
</tr>
</tbody>
</table>

Implemented some of the Python analyses made by Julien Desfossez
Speedup for analyses

Trace info: execution of Redis benchmark on 8-core machine
Trace size: 267MB
Trace events: 6,915,790

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Serial time in ms</th>
<th>Parallel time in ms for 64 threads</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>15990</td>
<td>1534</td>
<td>10.42</td>
</tr>
<tr>
<td>cpu</td>
<td>17622</td>
<td>1790</td>
<td>9.85</td>
</tr>
<tr>
<td>io</td>
<td>68584</td>
<td>3912</td>
<td>17.53</td>
</tr>
</tbody>
</table>
Conclusion

- Parallel processing is a viable way to achieve better, more scalable performance for the analysis of large traces.
- Parallelization will remain relevant as trace decoding improves, especially with recent high-performance disk hardware.
- Parallelizing for 64 cores is very different from parallelizing for 8 cores!
The road ahead

● Short-term goals
 ○ Pipeline babeltrace I/O
 ○ Implement other analyses, such as current state, memory

● Medium-term goals
 ○ Add support for parallelizing the XML state system analysis
 ○ Output into State History Tree

● Long-term goals
 ○ Distributed analysis
 ○ Live tracing analysis
One more thing...
Thank you!
Questions?