
Fabien Reumont-Locke
Under the supervision of Prof. Michel Dagenais

Efficient methods for kernel trace analysis
parallelization

I. Introduction and research objectives
II. Parallel Solution

A. Adapting the tools to parallel processing
B. Data partitioning
C. Resolving data dependencies

III. Experimental Results
A. Parallel memory and I/O operations
B. Performance and scaling

IV. The road ahead and conclusion

Presentation outline

Parallel computing

More and more cores being traced
More and more trace data being
generated
Trace analysis is still single-threaded

The gap between the amount of traced
data and the analysis speed is ever-
widening

Source: http://www.extremetech.com/wp-content/uploads/2012/04/Aubrey_Isle_die-640x480.
jpg

Intel Xeon Phi - 64 cores

Research objectives

The goal is to develop trace analysis parallelization methods that will:
a. Work for most existing analyses
b. Be efficient (provide considerable speedup over sequential

methods)
c. Be scalable (improved performance as number of parallel units

increases)

Do parallel computing methods allow for a
scalable acceleration of kernel trace analysis?

Challenges of parallelization

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Load balancing

Source: https://computing.llnl.gov/tutorials/parallel_comp/

Data partitioning

Locking and synchronisation Data dependencies

Adapting babeltrace to parallel analysis

● Added support for multiple iterators per trace by cloning file streams
inside each iterator

● Added thread-local quark cache to prevent contention on hash-table
access

Data partitioning

Time Time

Per-stream? Per-time range?

Both suffer from balancing problems!

● Fewer streams than available processors
● Some streams contain more data than the others
● Trace data unevenly distributed within the time range

Hybrid packet-driven partitioning

● CTF traces have a packet index that we can use to balance the load
● We assume that packet size is proportional to the number of events
● Walk packet index, accumulating packets until a certain threshold

Stream
index

CPU 0 CPU 1 CPU 2 CPU 3

Breaking data dependencies

● But what if we don’t know
some of the current state?

● We rely on the fact that the
unknown state lasts only
until the next event is read
○ sys_* -> syscall
○ exit_syscall -> user

● Most analyses keep a running “current state” containing all the
necessary data

● This current state is also queried to know, for example, which system
call was running

State propagation

● Values dependent on unknown
state are kept in each chunk’s
context
○ e.g. unknown syscall, or

syscall in unknown current
thread

● State is propagated forward in
time at the merge phase

● In terms of implementation, this simply means
handling unknown state + adding an additional
merge method to allow merging the contexts

Notes on hybrid balancing

● Hybrid balancing adds something else to worry about: migrations
● This is solved by keeping track of process migrations and merging in

the same way as described before

For example:

In blue are continuous executions of a process on a processor
Arrows represent migrations and dependencies

Merging algorithm

Sort by start time
Only merge until shortest chunk end

time

Trace analysis: I/O bound?

● If trace decoding (i.e. babeltrace) was
to be made faster, would trace analysis
become I/O bound?

● Simulate execution using simple
program with tweakable params
○ Amount of CPU work (“iterations”)
○ Size of mmap’d chunks
○ Prefaulting, etc.

● Allows to simulate with various:
○ Hardware
○ CPU efficiency of analysis
○ I/O efficiency of analysis

threadRoutine(chunk_size, chunk_offset, file) {
 buffer = mmap(chunk_size, chunk_offset, file);
 for (i = 0; i < chunk_size; i += PAGE_SIZE) {
 sum += buffer[i];
 /* do some useless work */
 for (j = 0; j < ITERATIONS; j++) {
 sum++;
 }
 }
 munmap(buffer);
 return sum;
}

Test CPU : 4 x AMD Opteron 6272
Sixteen-Core Processor

Concurrent memory operations

mm->mmap_sem serializes memory operations
(mmap, munmap, page faults)

Solution: single thread does mmap/munmap in a
pipeline

Test hardware - I/O

SATA Hard Disk Drive
● ~135 MBps sequential read

SATA Solid State Drive
● ~250 MBps sequential read

Intel P3700 PCIe SSD
● ~1145 MBps sequential read
● (yes, those are megabytes)

Parallel Efficiency

For a program with
throughput similar to
babeltrace (no analysis):
● 60% linear speedup

with 8 threads on HDD
(x5 speedup)

● 70% linear speedup
with 16 threads on SSD
(x11 speedup)

● 63% linear speedup
with 64 threads on
PCIe SSD (x40
speedup)

Test analyses

Implemented some of the Python analyses made by Julien Desfossez

Speedup for analyses

Analysis Serial time in ms Parallel time in ms
for 64 threads

Speedup

count 15990 1534 10.42

cpu 17622 1790 9.85

io 68584 3912 17.53

Trace info: execution of Redis benchmark on 8-core machine
Trace size: 267MB
Trace events: 6,915,790

Conclusion

● Parallel processing is a viable way to achieve better,
more scalable performance for the analysis of large
traces.

● Parallelization will remain relevant as trace decoding
improves, especially with recent high-performance
disk hardware.

● Parallelizing for 64 cores is very different from
parallelizing for 8 cores!

The road ahead

● Short-term goals
○ Pipeline babeltrace I/O
○ Implement other analyses, such as current state, memory

● Medium-term goals
○ Add support for parallelizing the XML state system analysis
○ Output into State History Tree

● Long-term goals
○ Distributed analysis
○ Live tracing analysis

One more thing...

Thank you!

Questions?

