
Using Address
Watchpoints

Instrument data, not just code

Ashvin Goel
University of Toronto

Advanced Host-Level Security (AHLS)
Dec 10, 2014

Project Goal

22

 Goal is to protect operating system
kernels against buggy module/driver code

 What types of bugs are we interested in?

Types of Bugs

33

 Bug detection
 Memory bugs

 Use-after-free, read-before-write, double-free
 Buffer overflow detectors, memory leak detector

 Concurrency (race, atomicity) bugs
 Direct memory access (DMA) bugs
 Semantic bugs

 Object-specific invariant violations, access pattern
violations

 Performance anomalies
 False sharing detector

Approach

 Instrument all module code at runtime
using Dynamic Binary Translation (DBT)
 Rewrite module code during execution
 Provides complete control over module

execution
 Built a prototype system called Granary

 Think "Valgrind", but for the Linux kernel

 What about writing bug detectors using
DBT?

44

Problems with Existing DBT Systems

 Instruments code at instruction level
 Wrong abstraction, tools need to instrument

data accesses

 All code is instrumented
 High overhead, limits heavy instrumentation

 Hard to use
 Have to deal with tricky instructions, worry

about re-entrancy, safety, maintain illusion that
DBT is not there

55

Ideally, We Want

66

 Data-centric instrumentation
 You tell the hardware what objects your tool

cares about
 The hardware tells your tool when the objects

is accessed

 Selective instrumentation
 Otherwise, no instrumentation overhead

 High-level instrumention
 Provide high-level API that handles

concurrency, safety

Solution: Address
Watchpoints

77

 Key insight
 Hard to track objects, easy to track addresses!
 Taint the address of “interesting” objects so

that accesses to them always raise a fault,
hence “address watchpoints"

 Address watchpoints
 Relies on x86-64 48-bit address

implementation in which 16 high-order bits are
"free" to be changed

 Kind of like getting a segfault when you read a
bad pointer

 On fault, use the tainted bits to identify what
object is accessed, and what do about it

Example

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

// skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

// skb == 0x7654FFFFA092600

...

dma_map_single(…, skb->data, , …);

do_general_protection(regs)

... regs->regs[...] == 0x7654FFFFA0926E0

...

<meta-data>

...

88

Isn’t this slow?

Selective Instrumentation

 Approach
 Take fault on first access to watched address
 Turn on DBT
 Turn off DBT when watched addresses are not

expected to be accessed

 Benefits
 Avoids faults on each watched addresss
 Provides efficiency by taking advantage of

locality of watched accesses
 No overhead when watched addresses are not

accessed
99

Initial Implementation

 Implemented address watchpoints using
Granary DBT system [HotDep 2013]

 Applications
 Buffer overflow detector
 Use-after-free, read-before-write
 Memory leak detector

1010

Current Status

 Implementing Granary+
 Learning from mistakes exposed by address

watchpoints

 Building high-level instrumentation API
 Tools are still hard to implement using address

watchpoints

 Will enable more powerful watchpoint-
based tools
 Races, lock contention, false sharing detector

1111

array div_count, div_p2_count

probe insn($opcode == "div") and function {
 div_count[$name]++ // fn performs div
 if ((@op.2 & (@op.2 - 1)) != 0)
 div_p2_count[$name]++ // fn performs div
 // by power of 2
}

probe end {
 for (fname in div_count)
 printf(“%d | %d | %s\n”, div_count[fname],
 div_p2_count[fname], fname)
}

Example: Instruction
Profiling

1212

Example: Address
Watchpoints

1313

array accesses // # accesses of target objects
set targets // handled by watchpoint framework

probe object.alloc and
 function($name == “skb_alloc") {

add(@start..@end, targets) // track address range
}

probe object.access and
 function ($name =~ “dma_map_single") {
 if (@addr in targets) accesses[targets[@addr]]++
}

Conclusions

1414

 Address watchpoints enable data-centric,
selective instrumentation

 Initial implementation enabled several
debugging tools for kernel modules

 Current Status
 Reimplemening Granary/watchpoint

implementation
 Building higher-level instrumentation API

 Will allow integrating tracepoints
 Will enable more powerful watchpoint tools

	Slide 1
	Project Goal
	Types of Bugs
	Approach
	Problems with Existing DBT Systems
	Ideally, We Want
	Solution: Address Watchpoints
	Example
	Selective Instrumentation
	Initial Implementation
	Current Status
	Example: Instruction Profiling
	Example: Address Watchpoints
	Conclusions

