
Using Address
Watchpoints

Instrument data, not just code

Ashvin Goel
University of Toronto

Advanced Host-Level Security (AHLS)
Dec 10, 2014

Project Goal

22

 Goal is to protect operating system
kernels against buggy module/driver code

 What types of bugs are we interested in?

Types of Bugs

33

 Bug detection
 Memory bugs

 Use-after-free, read-before-write, double-free
 Buffer overflow detectors, memory leak detector

 Concurrency (race, atomicity) bugs
 Direct memory access (DMA) bugs
 Semantic bugs

 Object-specific invariant violations, access pattern
violations

 Performance anomalies
 False sharing detector

Approach

 Instrument all module code at runtime
using Dynamic Binary Translation (DBT)
 Rewrite module code during execution
 Provides complete control over module

execution
 Built a prototype system called Granary

 Think "Valgrind", but for the Linux kernel

 What about writing bug detectors using
DBT?

44

Problems with Existing DBT Systems

 Instruments code at instruction level
 Wrong abstraction, tools need to instrument

data accesses

 All code is instrumented
 High overhead, limits heavy instrumentation

 Hard to use
 Have to deal with tricky instructions, worry

about re-entrancy, safety, maintain illusion that
DBT is not there

55

Ideally, We Want

66

 Data-centric instrumentation
 You tell the hardware what objects your tool

cares about
 The hardware tells your tool when the objects

is accessed

 Selective instrumentation
 Otherwise, no instrumentation overhead

 High-level instrumention
 Provide high-level API that handles

concurrency, safety

Solution: Address
Watchpoints

77

 Key insight
 Hard to track objects, easy to track addresses!
 Taint the address of “interesting” objects so

that accesses to them always raise a fault,
hence “address watchpoints"

 Address watchpoints
 Relies on x86-64 48-bit address

implementation in which 16 high-order bits are
"free" to be changed

 Kind of like getting a segfault when you read a
bad pointer

 On fault, use the tainted bits to identify what
object is accessed, and what do about it

Example

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

// skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

// skb == 0x7654FFFFA092600

...

dma_map_single(…, skb->data, , …);

do_general_protection(regs)

... regs->regs[...] == 0x7654FFFFA0926E0

...

<meta-data>

...

88

Isn’t this slow?

Selective Instrumentation

 Approach
 Take fault on first access to watched address
 Turn on DBT
 Turn off DBT when watched addresses are not

expected to be accessed

 Benefits
 Avoids faults on each watched addresss
 Provides efficiency by taking advantage of

locality of watched accesses
 No overhead when watched addresses are not

accessed
99

Initial Implementation

 Implemented address watchpoints using
Granary DBT system [HotDep 2013]

 Applications
 Buffer overflow detector
 Use-after-free, read-before-write
 Memory leak detector

1010

Current Status

 Implementing Granary+
 Learning from mistakes exposed by address

watchpoints

 Building high-level instrumentation API
 Tools are still hard to implement using address

watchpoints

 Will enable more powerful watchpoint-
based tools
 Races, lock contention, false sharing detector

1111

array div_count, div_p2_count

probe insn($opcode == "div") and function {
 div_count[$name]++ // fn performs div
 if ((@op.2 & (@op.2 - 1)) != 0)
 div_p2_count[$name]++ // fn performs div
 // by power of 2
}

probe end {
 for (fname in div_count)
 printf(“%d | %d | %s\n”, div_count[fname],
 div_p2_count[fname], fname)
}

Example: Instruction
Profiling

1212

Example: Address
Watchpoints

1313

array accesses // # accesses of target objects
set targets // handled by watchpoint framework

probe object.alloc and
 function($name == “skb_alloc") {

add(@start..@end, targets) // track address range
}

probe object.access and
 function ($name =~ “dma_map_single") {
 if (@addr in targets) accesses[targets[@addr]]++
}

Conclusions

1414

 Address watchpoints enable data-centric,
selective instrumentation

 Initial implementation enabled several
debugging tools for kernel modules

 Current Status
 Reimplemening Granary/watchpoint

implementation
 Building higher-level instrumentation API

 Will allow integrating tracepoints
 Will enable more powerful watchpoint tools

	Slide 1
	Project Goal
	Types of Bugs
	Approach
	Problems with Existing DBT Systems
	Ideally, We Want
	Solution: Address Watchpoints
	Example
	Selective Instrumentation
	Initial Implementation
	Current Status
	Example: Instruction Profiling
	Example: Address Watchpoints
	Conclusions

